※ 아래 글은 정보통신기술진흥센터(IITP)가 발간하는 주간기술동향 1835호(2018. 2. 28. 발행)에 기고한 원고입니다.


▶ IITP에서 PDF 포맷으로 퍼블리싱한 파일을 첨부합니다. 가독성이 좋으니 참고하시기 바랍니다.

차세대 동작 인식 기술 발표 봇물, 소형화∙저전력화가 특징.pdf



[ 요 약 ]


마이크로소프트가 키넥트를 발표한 이래 동작 인식 기술은 게임뿐만 아니라 의료제조업 등 다양한 분야에서 새로운 인터페이스 방식으로 점차 확산되어 가고 있음최근 반도체 및 센서 기술의 발전에 힘입어 새롭게 업그레이드 되고 있는 차세대 동작 인식 기술은 소형화경량화저전력화가 특징이어서 스마트폰을 비롯해 보다 다양한 기기에 탑재될 가능성을 획득함으로써동작 인식의 활용이 보다 광범위하게 이루어질 수 있는 모멘텀을 확보하고 있음



[ 본 문 ]


ž 집적회로 기술 관련 국제 컨퍼런스인 International Solid-State Circuits Conference(ISSCC) 2018에서 차세대 동작 인식 기술이 잇따라 발표되었음


Ø 손이나 몸의 움직임을 인식하여 기기 조작의 인터페이스로 사용하는 동작(gesture) 인식 기술은 2010년 출시된 마이크로소프트의 동작 입력 컨트롤러 키넥트(Kinect)를 계기로 대중적으로 알려지기 시작했음


Ø 키넥트는 MS의 게임 콘솔인 X박스와 짝을 이루며 주로 게임 분야에서 활용되었으나, 그 밖에도 직접 기기 조작이 어려운 수술실에서 이용하는 등 점차 응용처가 확산되어 왔음


<자료> Marnent


[그림 1] 수술실의 동작 인식 인터페이스


Ø 최근에는 VR(가상현실)/AR(증강현실) 애플리케이션에서 활용이 적극 모색되고 있기도 하며, 스마트폰이나 헤드마운트디스플레이(HMD)에 동작 인식 기술을 탑재하려는 움직임도 시작되었음


Ø 2월 중순에 샌프란시스코에서 열린 ISSCC 2018 컨퍼런스에서는 이처럼 새로운 분야에 적용될 것을 겨냥한 차세대 동작 인식 기술들이 다수 선보였는데, 신기술들은 이전의 동작 인식 기술에 비해 소비 전력과 비용은 절감하고, 계측 성능은 대폭 강화한 것이 특징임


ž 차세대 동작 인식 기술들은 우선 적외선을 사용하지 않아 전력 및 비용을 크게 절감하고고 있는데, 우리나라의 KAIST가 선보인 손 동작 인식 IC 칩이 대표적


Ø 동작 인식 입력 컨트롤러에서 사용하는 심도 이미지 센서의 경우, 빛을 쐰 후 되돌아 올 때까지의 비행 시간으로 거리를 추정하는 ToF(Time of Flight) 방식이 일반적임


Ø 혹은 특정한 2차원 패턴(도트)광을 대상물에 쏘이고, 촬상 소자가 획득하는 패턴광의 왜곡을 바탕으로 심도를 측정하는 SL(Structured Light) 방식을 사용하기도 함


Ø ToF SL 방식 모두 비교적 정밀하게 동작을 인식할 수 있지만 적외선을 이용하므로 발광 소자나 수광 소자 등의 광학 소자가 필요하기 때문에, 그 만큼 소비 전력의 증가나 비용 상승으로 이어지기도 쉬움


Ø 이런 문제를 해결하고자 올해 ISSCC에서는 적외선을 이용하지 않는 방법의 제안이 잇따랐는데, 대표적으로 KAIST는 스테레오 카메라를 이용해 전력 소모가 작은 손짓 인식 IC의 프로토타입을 제작하여 선보였음


Ø KAIST는 좌우 한 쌍의 카메라 이미지에 대해 대응점을 탐색하고 시차 정보로부터 이미지의 심도 정보를 얻는 스테레오 매칭 방식을 채택하였음



<자료> ISSCC


[그림 2] KAIST가 시험 제작한 손 동작 인식용 IC의 주요 사양()과 데모 장면(아래)


Ø 스테레오 매칭 방식은 ToF 방식 등에 비해 전력 소모가 작은 장점이 있지만, 손짓의 오인식이 발생하기 쉽다는 문제가 있었는데, KAIST는 손의 식별과 심도 추정에 인공지능 알고리즘의 하나인 CNN(Convolutional Neural Network)을 이용하여 인식의 정확도를 높였음


Ø 구체적으로는 말하면, KAIST의 방식은 20~40cm의 손 동작 인식 범위에서 추적 오차 (hand tracking error)가 평균 4.3mm 정도에 불과하고, 프로토타입 IC의 소비 전력은 한손 인식 시에 9.02 mW, 양손 인식 시에 31.2 mW로 매우 낮음


Ø KAIST 팀은 프로토타입 IC를 구현한 USB 동글을 스테레오 카메라 장착 노트북에 끼워 손짓을 인식하는 데모를 선보였는데, 가상 공간에 나타난 입방체를 손으로 잡거나 늘리는 모습을 보여주었음


ž 밀리미터파를 이용하여 저전력으로 동작을 인식하려는 기술도 나왔는데, 이런 방식의 데모는 인피니온(Infineon)과 텍사스 인스트루먼트(Texas Instruments, TI)가 선보였음


Ø 인피니온은 ISSCC에 논문을 투고·발표한 것이 아니라, ISSCC의 담당 위원으로 추천 및 승인된 기업이 자사 제품과 기술을 홍보할 수 있는 인더스트리 쇼케이스(Industry Showcase)를 통해 기술을 공개하였음


Ø 인피니온은 소비 전력 100 mW 미만의 소형(12.5mm × 9mm × 0.8mm) 동작 인식 밀리미터파 레이더(트랜시버) IC를 개발했는데, 측정 거리가 10m로 길다는 점도 특징


Ø TI는 시험 제작한 밀리미터파 레이더용 트랜시버 IC를 사용하여 동작 인식 데모를 보여주었는데, IC는 이번 ISSCC에서 구두 발표된 것으로 주로 자율운전에서 차량 밖의 상황을 감지하기 위해 사용될 것이라고 함


Ø 그러나 TI는 원거리뿐만 아니라 근거리에서도 사용할 수 있음을 어필하기 위해 손가락의 움직임을 인식할 수 있다는 것을 데모 세션에서 선보였는데, 데모는 운전석 주변의 조작 패널에 적용하는 것을 가정한 것이었음


ž 이 밖에도 노르웨이의 스타트업인 엘립틱 랩(Elliptic Labs)이 인더스트리 쇼케이스에서 초음파를 이용한 동작 인식 기술을 선보였음


Ø 엘립틱 랩은 초음파의 가상 센서로 손짓을 인식하는데, 자신들의 인식 알고리즘을 채택한 소프트웨어를 스마트폰에 탑재하면, 전용 센서를 추가하지 않고도 동작 인식을 가능하게 해주기 때문에 가상 센서라 부르고 있음


Ø 엘립틱 랩은 이미 스마트폰에 탑재되어 있는 스피커를 초음파 송신기로, 마이크를 수신기로 이용하기 때문에 만약 스마트폰에 여러 개의 스피커가 내장되어 있다면 동작 인식의 정확도는 더욱 높아진다고 함


ž 동작 인식에 사용하는 ToF 방식의 심도 이미지 센서에서도 큰 진전이 있었는데, 마이크로소프트는 이번 ISSCC에서 100만 화소가 넘는 ToF 센서용 수광 소자를 발표하였음


Ø MS가 발표한 이미지 센서의 유효 화소 수는 1024×1024 픽셀, 화소 사이즈는 3.5μm각이며, 이 화소에 초당 30 프레임의 프레임 속도로 작동시킬 경우 소비 전력은 650 mW로 낮은 편이고, 칩 크기는 9.8mm×5.4mm 65nm 제조 공정에서 만들어진다고 함


Ø 또한 글로벌 셔터(global shutter)를 지원하기 때문에 빠른 몸짓을 보다 정확하게 인식할 수 있게 된 것도 특징임


Ø 전자제어 셔터에는 롤링 셔터(Rolling Shutter)와 글로벌 셔터 방식이 있는데, 롤링 셔터는 포컬 플레인에 있는 두 개의 차광막을 순차적으로 열고 닫는 구조여서 이미지 센서가 한 라인씩 신호를 읽게 되므로, 뒤로 갈수록 증가된 신호량의 적체 문제가 발생


Ø 반면, 글로벌 셔터는 전체를 동시에 노광시킨 후 한번에 닫아버리는 구조여서 한 프레임의 촬영 시점이 동일하기 때문에 시차에 의한 왜곡이 없는 장점이 있고 동영상 촬영에 보다 적합한 것으로 알려져 있음


Ø 통상 ToF 센서는 손을 빠르게 휘두르는 상태와 같이 빠르게 이동하는 객체가 있는 상황에서 배경광을 노이즈로 인식하기 때문에 거리 측정의 정밀도가 떨어지는 쉬움


Ø ToF 센서용 수광 소자는 통상 두 프레임 간의 차이를 취하여 배경광을 제거하므로, 다음 프레임이 되기 전에 객체가 움직이면 이전 프레임의 객체가 잔상으로 남아 노이즈가 되어 거리 측정 정밀도가 저하되는 것인데, 글로벌 셔터 방식이면 이런 문제가 거의 없어짐


ž MS는 시연을 통해 프로토타입 센서와 레이저 광원을 조합한 ToF 센서에 의한 측정 결과 등을 보여 주었는데, 2013년에 나온 2세대 키넥트 보다 성능이 크게 향상되었음


<자료> ISSCC


[그림 3] MS의 새로운 ToF 센서 시연 장면


Ø 고무적인 것은 광원을 포함해도 이 ToF 센서의 소비 전력이 950 mW 1W를 밑돈다는 것으로, 이는 모바일 기기에도 탑재될 수 있음을 의미하기 때문


Ø 심도의 불확실성(Depth Uncertainty) 3000 lux 미만의 밝기 환경에서 측거 범위의 0.2% 미만이었고, 측거 범위는 1024픽셀 × 1024 픽셀로 구동할 경우 0.4~4.2m였으며, FOV(시야각)은 수직과 수평 모두 120도였음


Ø 시연 결과 MS의 새로운 ToF 센서는 2세대 키넥트에 비해 성능이 크게 향상된 것으로 보이는데, 가령 화소 수는 약 4배 이상이며 소비 전력은 크게 낮아졌음


Ø 2세대 키넥트는 ToF 센서의 소비 전력이 컸기 때문에 냉각 기기가 컸고 냉각 팬도 붙어 있었으며, 따라서 키넥트 본체의 크기로는 도저히 모바일 기기에 탑재할 수 없었음


Ø 이에 비해 MS가 데모 세션에서 보여준 프로토타입의 ToF 센서 모듈은 마우스 정도의 크기였기 때문에 기술 발전 여하에 따라서는 스마트폰의 주변기기 나아가 스마트폰에 탑재될 수 있는 가능성을 보여주었음


ž 소형화-경량화-저전력화가 특징인 차세대 동작 인식 기술이 가장 먼저 활용될 분야로는 VRAR, 자동차 분야 등이 꼽히고 있으며, 특히 VR 시장의 촉매제가 될 것으로 기대됨


Ø 2016년에 고사양의 HMD들이 속속 선보이며 VR 시장이 본격화될 것이란 전망이 계속해서 제기되고 있으나 아직은 현실화되지 못하고 있음


Ø 여기에는 여러 이유가 있겠으나 센서를 외부에 놓고 HMD가 그 신호를 받아들여 위치와 동작을 인식하는 아웃사이드-인 방식으로 인한 번거로움도 한 요인으로 꼽힘


Ø 이에 비해 2세대 HMD는 센서 카메라를 HMD의 전면에 배치해 사용자의 위치와 움직임을 인식하는 인사이드-아웃 방식을 채택함으로써 PC가 필요 없는 스탠드얼론 형태를 띠고 있는데, 차세대 동작 인식 기술은 더 가볍고 편리한 HMD 출현을 촉진할 것으로 보임


Ø 자동차 분야에서는 운전자의 몸짓을 감지해 전방 주시 태만, 졸음 운전, 운전 중 전화 사용 등에 대한 경고를 알림으로써 안전도를 높이거나, 운전자의 손 동작을 인식해 에어컨을 켜거나 음악을 재생하는 등의 인터페이스를 구현해 편의성을 높여줄 것으로 기대됨

※ 아래 글은 정보통신기술진흥센터(IITP)가 발간하는 주간기술동향 1835호(2018. 2. 28. 발행)에 기고한 원고입니다.


▶ IITP에서 PDF 포맷으로 퍼블리싱한 파일을 첨부합니다. 가독성이 좋으니 참고하시기 바랍니다.

2017년 자율운전 도로 주행 테스트 결과, 기술력 1위는 웨이모.pdf



ž 캘리포니아 교통당국의 발표 결과, 자율운전 자동차의 기술력은 구글의 자회사 웨이모(Waymo)가 글로벌 자동차 대기업과 스타트업을 ​​아직 크게 앞서고 있는 것으로 나타남


Ø 캘리포니아 주는 자율운전 도로주행 테스트를 허용하고 있는 몇 안 되는 곳으로 교통당국은 주 내 도로에서 자율운전 차량을 테스트하는 기업에 대해 그 해의 시험 결과를 보고하도록 의무화하고 있음


Ø 각 사가 보고한 테스트 결과를 취합해 캘리포니아주 교통당국이 공개한 보고서(Autonomous Vehicle Disengagement Reports 2017)에 따르면, 자율운전 도로주행 거리와 AI의 운전 제어 중지 빈도 측면에서 웨이모가 모두 타사에 비해 크게 앞선 것으로 나타남


Autonomous Vehicle Disengagement Reports 2017 (20개사의 보고서를 볼 수 있는 사이트)


Ø 우선 도로주행 테스트 거리를 보면, 웨이모는 2017년에 총 75대의 자율운전 차량을 테스트했으며, 주행거리는 총 35 2,545 마일( 56만 킬로미터)이었음


Ø 웨이모의 테스트 주행거리는 2016 63 5,868 마일에 비해 절반 가량 줄어든 수치임에도 불구하고, 2017년 시험 주행거리 2위를 차지한 GM에 비해 2.7배 가량 높은 것임


Ø 자율운전 기술력과 관련해 주행거리 보다 주목해야 할 것은 AI(인공지능)이 제어 능력을 잃어 사람에게 운전 권한을 넘기는 분리(Disengagement)의 발생 횟수인데, 웨이모 자율운전 차량은 2017년에 35 2,545 마일을 달리는 사이에 63회의 분리가 발생하였음


Ø 즉 웨이모의 자율운전 AI는 현재 5,596 마일( 9,000 킬로미터) 주행 당 한 번 꼴로 판단 불능 상태에 봉착하고 있는 셈


Ø 웨이모의 과거 분리 횟수 당 주행거리를 보면, 2015년에 1,200 마일( 2,000 킬로미터) 1, 2016년에는 5,000 마일( 8,000 킬로미터) 1회였으므로, 웨이모의 자율운전 AI 성능은 꾸준히 향상되고 있음을 알 수 있음


[1] 2016.12~2017.11 캘리포니아 주 내 자율운전 테스트 기업의 AI 분리 횟수 당 주행거리

기업명

분리 횟수

주행거리(마일)

분리 1회당 주행거리(마일)

Waymo

63

352,544.6

5,596

GM Cruise

105

131,675.9

1,254

Drive.ai

93

6,127.6

255

Baidu

42

1,949.14

217

Nissan

24

5,007

207

Zoox

14

2,244

160

Telenav

50

1,581

32

Delphi Automotive

81

1,810.6

22

NVIDIA

109

505

5

BMW

598

1,595

3

Valeo North America

215

574.1

3

Mercedes Benz

773

1,087.7

1

<자료> Department of Motor Vehicles, State of California


ž 웨이모를 뒤쫓고 있는 곳은 제너럴 모터스(GM)의 자회사인 GM 크루즈(GM Cruise) 2017년에 도로 주행 테스트 거리를 전년도에 비해 10배 이상 늘렸음


Ø GM 크루즈의 AI가 사람에게 권한을 넘기는 빈도는 1,254 마일 당 1회였는데, 이는 웨이모의 2015년 수준인 1,200 마일 당 1회를 따라잡은 것임


Ø 또한 GM 크루즈의 2016년 분리 1회 당 주행거리가 54 마일이었음을 감안하면, GM 1년 사이에 자율운전 AI의 성능을 비약적으로 높였음을 유추할 수 있음


Ø GM 크루즈의 테스트에서 흥미로운 점은 자율운전 차량의 도로 주행을 샌프란시스코에서만 실시하고 있다는 것인데, 이는 웨이모가 샌프란시스코의 교외 지역인 마운틴 뷰에서 도로 테스트를 실시하고 있는 것과 대비되는 부분


Ø 샌프란시스코는 교통량이 많고 도로가 복잡하기 때문에 사람도 운전하기가 쉽지 않은 지역인데, GM 크루즈는 운행 조건이 더 나쁜 환경에서 테스트를 함으로써 웨이모의 기술력을 단기간에 따라 잡으려 하는 것으로 보임


Ø 이와 유사한 전략을 펴고 있는 곳이 샌프란시스코에 본사를 둔 스타트업 즈욱스(Zoox)인데, GM 크루즈와 마찬가지로 샌프란시스코에서만 주행 테스트를 실시하고 있다고 함


ž 캘리포니아 교통당국의 보고서를 보면 자율운전 차량들 사이에 성능의 차이가 크다는 사실을 알 수 있는데, 가장 차이가 두드러지는 것이 사람에게 권한을 넘기는 횟수임


Ø 웨이모의 자율운전 자동차가 5,596 마일 당 1회만 AI가 사람에게 권한을 인계하는 반면 메르세데스 벤츠와 BMW의 자율운전 자동차는 1~3 마일 당 1회 꼴로 AI로부터 사람으로 인계가 발생하고 있음


Ø AI용 반도체와 자율운전 소프트웨어를 조합한 자율운전 플랫폼 제공을 목표로 하고 있는 엔비디아의 시험 성적도 아직은 불안한 수준인데, 505 마일을 주행하는 동안 109회 분리가 발생하여 5 마일 당 1회 꼴로 분리가 발생하고 있음


Ø 엔비디아는 자율운전 플랫폼을 사용해 누구나 자율운전 자동차를 구현할 수 있게 함으로써 자율운전 기술의 일상용품화(Commodity)를 실현하겠다는 포부를 밝히고 있으나, 이 목표가 실현되기까지는 아직 시간이 더 필요할 것으로 보임


ž 캘리포니아 교통당국의 보고서는 자율운전 자동차의 기술 수준을 가늠하는데 매우 유용한 자료이지만, 이런 정보를 취합할 수 있는 것은 2017년이 마지막이 될 것으로 보임


Ø 가장 중요한 기술 개발 업체인 웨이모는 무인택시 시범 서비스의 허가 문제로 캘리포니아 당국과 합의에 이르지 못해 작년 말부터 애리조나로 완전 무인 자율운전 자동차의 도로 주행 테스트를 실시하고 있으며, 올해 캘리포니아에서 도로 주행 여부는 불투명함


Ø 웨이모의 캘리포니아 내 도로 주행 거리가 2016년에 비해 절반 가량으로 줄어든 데에는 이런 배경이 작용한 것인데, 웨이모는 2017년부터 애리조나 외에 워싱턴과 텍사스 주에서도 자율운전 도로 주행 테스트를 실시하고 있음


Ø 웨이모는 2017 12월 현재 자율운전 도로 주행 테스트가 총400만 마일( 645만 킬로미터)이 넘었다고 발표한 바 있는데, 이는 캘리포니아 지역 이외의 도로 테스트도 상당한 거리에 달했음을 시사하는 것임


Ø 포드 자동차 역시 2017년에 자율운전 차량 테스트 지역을 캘리포니아에서 미시간 주로 옮겼는데, 2016년에 캘리포니아에서 590 마일의 도로 테스트를 실시했던 포드였지만 2017년에는 전혀 실시하지 않았음


Ø 따라서 각 사의 자율운전 기술의 성능 차이가 어느 정도인지를 간접적으로나마 비교하려면 2018년에는 기존과 다른 데이터를 사용할 필요가 있을 것임


ž 한편 시장조사기관 내비건트 리서치(Navigant Research)는 자체 분석 툴을 이용해 평가한 결과 GM을 자율주행 종합 기술력 1, 웨이모를 2위로 발표하였음


Ø 내비건트 리서치는 자율운전 시스템을 개발하고 있는 19개 기업을 비전, 시장출시 전략, 파트너, 생산 전략, 기술, 판매 및 유통, 제품 성능, 제품 품질과 신뢰성, 제품 포트폴리오, 유지력 10개 기준으로 평가하였음


<자료> Navigant Research


[그림 1] 자율운전 기술 기업들의 순위표


Ø 그 다음 자체 순위표(leaderboard) 방법론을 이용하여 19개 기업을 선도자(leader)-경쟁자(contender)-도전자(challenger)-추종자(follower) 4개 그룹으로 분류하였음


Ø 선도자 그룹에는 GM, 웨이모, 다임러-보쉬, 포드, 폴크스바겐, BMW-인텔-FCA(피아트 크라이슬러 연합), 앱티브(Aptive, 델파이의 자회사) 7개 기업 및 연합이 포함되었음


Ø 내비건트 리서치 보고서에서 웨이모가 2위로 평가된 것은 자동차 기업이 아니기 때문에 생산 능력에서 GM에 밀렸기 때문이며, 자율주행 기술력 부문만 본다면 캘리포니아 교통당국의 보고서와 마찬가지로 단연 최고 수준으로 평가 받았음


Ø 내비건트 리서치는 2020년경에 제한적 범위지만 주행과 가속 및 제동에는 사람이 신경 쓸 필요가 없을 정도의 자율주행차가 등장할 것으로 전망하는데, 글로벌 완성차 제조업체들이 대부분 이때를 기점으로 자율주행차 양산을 목표로 하고 있기 때문임


ž GM은 자율주행 개발 경쟁에 비교적 뒤늦게 뛰어들었지만 과감한 투자와 빠른 양산화 전략을 추진하면서 작년 평가에서 4위를 기록했으나 이번에 1위로 평가되었음


Ø GM2016년 차량 공유 서비스 업체 리프트(Lyft) 5억 달러를 투자한 바 있고, 자율주행 솔루션 개발 스타트업인 크루즈 오토메이션(Cruise Automation)10억 달러에 인수하는 등 과감한 투자 행보를 보인 바 있음



Ø 2017년에도 레이저 레이더(LiDAR) 기술을 보유한 스타트업 스트로브(Strobe)를 인수했으며, 2018년 들어서자마자 크루즈 오토메이션과 함께 4세대 자율주행차 크루즈 AV(Autonomous Vehicle)를 공개하였음


<자료> TechCrunch


[그림 2] 운전대 없는 GM의 크루즈 AV


Ø 크루즈 AV는 운전대가 없기 때문에 운전석과 조수석의 구분이 없고 브레이크나 액셀러레이터 페달이 아예 없는데, 댄 암만 GM 사장은 2019년에 크루즈 AV가 도로 주행을 할 수 있도록 미 교통 당국에 허가를 신청한 상태라고 밝혔음


ž 테슬라는 몇 년 전까지만 해도 내비건트 리서치의 평가에서 상위권에 올랐지만, 이후 가시적인 기술 발전 전략을 보여주지 못해 이번 조사에서는 최하위로 평가되었음


Ø 내비건트 리서치는 테슬라가 궂은 날씨나 대기가 흐린 환경에서도 카메라와 센서가 이상 없이 작동할 수 있게 해주는 기술이 없기 때문에 사람이 개입하지 않는 완전한 자율주행차를 만들기는 당분간 어렵다고 평가하고 있음


Ø 2016년 테슬라는 자율주행 소프트웨어인 오토파일럿(Auto Pilot) 탑재 차량의 운전자가 사고로 사망하자 자율주행 핵심 기술 제공업체인 모빌아이(Mobileye)와 결별했는데, 이후 기술 개발이 정체되고 있다는 평가가 나오고 있음


Ø 내비건트 리서치는 테슬라가 자율주행차 분야에 높은 비전을 가지고 있지만 그 비전을 지속적으로 실행할 수 있는 능력을 지속적으로 입증하지 못하고 있다며 새로운 전기가 필요할 것으로 분석하고 있음


Ø 한편, 테슬라와 결별한 모빌아이는 2017 3월 인텔이 153억 달러에 인수한 바 있으며, 인텔은 모빌아이 인수를 통해 자율주행 기술 분야에서 새로운 다크호스로 급부상하였음

※ 아래 글은 정보통신기술진흥센터(IITP)가 발간하는 주간기술동향 1835호(2018. 2. 28. 발행)에 기고한 원고입니다.


▶ IITP에서 PDF 포맷으로 퍼블리싱한 파일을 첨부합니다. 가독성이 좋으니 참고하시기 바랍니다.

&lsquo;디지털 트윈&rsquo; 기능 강화하는 PLM(제품생명주기관리) 도구들.pdf



ž 4차 산업혁명의 핵심 개념인 사이버-물리 시스템(CPS)을 실현하기 위한 기술인 디지털 트윈(Digital Twin)의 실행은 크게 3단계로 이루어짐


Ø 4차 산업혁명이 전개되는 스마트 공장에서는 사이버 시뮬레이션 기술을 오프라인의 공장에 적용하는 CPS(Cyber-Physical System)를 통해 공장의 생산 라인을 수시로 교체할 수 있고, 각 부품 및 공정마다 센서들이 연결되어 제품의 완성도를 높일 수 있음


Ø CPS를 구현하는 것이 디지털 트윈 기술인데, 실제 물리적 자산 대신 소프트웨어로 가상화한 자산의 쌍둥이를 가상으로 만들어 시뮬레이션 함으로써 실제 자산의 현재 상태, 생산성, 동작 시나리오 등에 대한 정확한 정보를 얻을 수 있게 해 줌


Ø 디지털 트윈은 GE가 제창한 것으로 현재 에너지, 항공, 헬스케어, 자동차, 국방 등 여러 산업 분야에서 디지털 트윈을 이용하여 설계부터 제조, 서비스에 이르는 모든 과정의 효율성을 향상시켜 자산 최적화, 돌발 사고 최소화, 생산성 증가 등의 효과를 얻고 있음


Ø 디지털 트윈의 실행은 크게 세 단계로 구성되는데, 첫 번째 단계는 실제 정보를 수집하여 가상의 쌍둥이 모델에 반영하는 단계로 여기에서는 센서 및 센서 데이터를 수집하기 위한 IoT 기술이 사용됨


Ø 다음 두 번째 단계는 디지털 세계의 쌍둥이를 분석하는 단계로, 여기에서는 컴퓨터를 활용한 수치 시뮬레이션, 빅데이터 분석, AI(인공지능) 등의 기술이 중요함


Ø 마지막 세 번째 단계는 분석 결과를 장비와 생산 설비의 각종 매개 변수, 유지보수 일정 등을 결정하는 판단 자료로 생성하여 현실 세계에서 활용하는 것인데, 이 때 분석 결과를 사람에게 알기 쉬운 형태로 표시하는 AR(증강현실)/MR(복합현실) 기술이 사용되고 있음


ž 디지털 트윈의 3단계 중 첫 단계에서는 장착 센서가 공간의 제약을 받지 않도록 경량화하는 것이 좋은데, 최근에는 더 나아가 부품 자체를 센서로 만드는 흐름도 등장하고 있음


Ø 만일 첫 번째 단계에서 얻고 싶은 물리량을 기존 센서에서 얻을 수 없는 경우, 기존의 센서가 취득한 물리량에서 원하는 물리량을 유추하거나 센서를 새로 추가 설치하게 됨


Ø 이 때 새로 장착하는 센서는 공간의 제약을 받지 않도록 소형·경량화하는 것이 바람직하며 전원 및 통신 수단도 확보해야 하기 때문에, 최근에는 부품 자체를 센서로 만들어 버리는 움직임도 나타나고 있음



Ø 예를 들어 독일 쉐플러(Schaeffler)가 개발한 센소텍트(Sensotect) 코팅 시스템은 베어링과 브래킷 등의 부품 표면에 배선 패턴을 만들고 거기에 전류를 흘림


Ø 부품의 변형량에 따라 배선을 흐르는 회로의 저항값이 변화하기 때문에 이를 통해 부품에 가해지는 힘과 토크 등을 측정할 수 있게 되는데, 배선 패턴은 부품 표면에 특수 합금을 코팅하고 미리 정해 둔 패턴이 남도록 깎아 제작함


<자료> Schaeffler


[그림 1] 센서가 각인된 베어링과 브래킷


ž 한편 최근 주요 PLM(제품생명주기관리) 도구 공급업체들은 자사 제품이 디지털 트윈 활용의 세 단계를 모두 지원하도록 기능 확장을 추진하고 있음


Ø PLM(Product Lifecycle Management) 도구는 CAD 데이터 등의 제품 설계 정보와 BOM(Bill of Materials, 자재 명세서)를 관리하고 사용자에게 그 정보를 편집· 가공하는 기능을 제공하는데, PTC나 다쏘 시스템 (Dassault Systems) 등이 대표적 PLM 도구임


Ø PTC 2013년에 씽웍스(ThingWorx)라는 솔루션 개발업체를 인수했는데, 씽웍스는 건설 기계와 공작 기계의 가동 정보를 실시간으로 획득하여, 분석 애플리케이션을 직관적으로 개발할 수 있게 해 주는 IoT 플랫폼임


Ø PTC는 씽웍스가 획득한 부품 정보와 PLM 도구의 3D 데이터를 연계시켜 실제 세계와 디지털 가상세계의 융합을 실현하겠다는 목표를 내걸고 있음


Ø 다쏘 시스템은 PLM 도구와 생산 라인을 감시·관리하는 MES(제조실행시스템)를 연계하여 PLM 데이터에 대한 시뮬레이션 결과에 따라 작업을 임기응변으로 변경하는 기능을 제공함으로써 생산 라인의 디지털 트윈 활용을 지원하고 있음


Ø 현재 기술 수준에서 실제 세계의 정보를 획득하여 디지털 트윈에 반영하기까지는 약간의 시간 지연이 발생하며, 수집된 정보 역시 실제 그대로라 말하기는 어려움


Ø 가령 자동차라면 수만 개에 달하는 부품 모두를 반영한 ​​디지털 트윈은 아직 구현이 어렵고, 현실적으로는 우선 타이어 등 소모율이 높고 안전성과 직결되는 부품을 중심으로 부분적인 디지털 트윈을 모델링 하여 유지 관리에 이용하는 수준이라 할 수 있음


Ø 그러나 IoT, AI, 시뮬레이션 분야는 계속 발전하고 있으며 앞으로도 다양한 기술 혁신이 기대되기 때문에, 디지털 트윈은 ‘현실 세계의 쌍둥이’에 대한 완전한 정보를 가지고 그것의 동작을 가상세계에서 충실하게 재현해 내는 이상적인 모습에 근접해 나갈 것임