※ 아래 글은 정보통신기술진흥센터(IITP)가 발간하는 주간기술동향 1841호(2018. 4. 11. 발행)에 기고한 원고입니다.


▶ IITP에서 PDF 포맷으로 퍼블리싱한 파일을 첨부합니다. 가독성이 좋으니 참고하시기 바랍니다.

우버 자율운전차 사망 사고, 도심 주행 허가 기준 강화될 듯.pdf



[ 요 약 ]


자율주행 자동차의 시가지 주행 테스트 과정에서 처음으로 인명 사고가 발생하면서 자율운전 기술의 안전성에 대한 의문이 제기되고 있음사고의 원인이 센서 결함인지자율운전 알고리즘의 문제인지 아직 조사가 진행 중이지만원인 규명 때까지 주행 테스트는 당분간 중단될 것으로 보임자율주행 상용화를 위해 시가지 주행은 반드시 필요한 만큼 테스트가 완전 중단되지는 않겠지만개발업체들의 기술 수준에 따라 허용 기준이 설정되는 등의 변화가 예상됨



[ 본 문 ] 


ž 우버(Uber)의 자율운전 차량이 일으킨 사고의 원인은 아직 조사 중이지만, 자율운전차에 의한 첫 보행자 사망 사고라는 점에서 상당한 파장을 일으키고 있음


Ø 사망 사고는 2018 318 , 애리조나주 피닉스 교외인 템피(Tempe)에서 일어났는데 우버의 자율운전 시험 차량(Volvo XC90 SUV 베이스)이 시속 40 마일로 주행하던 중 길을 건너고 있던 여성을 치면서 발생하였음


Ø 이 여성은 자전거를 끌고 도로의 왼쪽에서 오른쪽으로 건너 가고 있었는데, 맨 끝차선을 달리고 있던 자동차는 감속하지 않고 직진을 계속해 여성을 사망시켰음


<자료> New York Times


[그림 1] 우버 자율주행차 인명 사고 상황


Ø 자동차에는 운전자가 탑승하고 있었지만, 차량 내부 촬영 영상을 보면 사고 당시 전방을 주시하고 있지 않았기 때문에 위험 회피 조치를 할 수 없었음


Ø 자율운전 차량과 관련된 사고는 몇 차례 있었지만 인명 사고가 난 것은 이번이 두 번째이며, 보행자가 사망한 것은 처음임


Ø 지난 2016년 테슬라 차량이 트럭과 충돌하며 운전자가 사망할 당시 테슬라의 오토파일럿(Auto Pilot) 기능이 핸들과 페달 제어를 지원하는 레벨 2 정도였다면, 이번 사고 차량은 목적지를 설정하면 스스로 주행하는 레벨 4 단계였기 때문에 사고의 여파가 더 크게 나타나고 있음


Ø 사고 직후 애리조나를 비롯 다른 주에서도 사고의 원인이 정확히 밝혀지기 전까지 자율운전 도로 주행 테스트를 잠정 중단시켰으며, 현재 국가교통안전위원회(National Transportation Safety Board, NTSB)가 사고 원인 조사를 진행하고 있음


ž 사고 발생 시각은 밤 10시 경이기 때문에 사고 원인 분석은 우선 보행자 인식 실패가 센서의 결함인지 시스템의 결함인지를 규명하는 데 초점을 맞추고 있을 것으로 추정됨


Ø 우버의 자율운전 자동차는 여러 센서를 탑재하여 자동차 주위의 객체를 인식하는데, 지붕 위에는 하나의 라이더(Lidar, 레이저 센서) 7 대의 카메라를 탑재하고 있으며, 또한 레이더도 설치하여 차량 주위 360도를 모니터 하고 있음


Ø 사고가 야간 주행 중에 일어나긴 했지만, 기술적으로는 주변이 어두워도 라이더를 통해 객체를 인식할 수 있고, 보행자 정도의 객체 크기라면 확실하게 감지 할 수 있다는 것이, 우버 차량에 탑재된 라이더를 제작한 벨로다인(Velodyne)의 입장임


<자료> Velodyne


[그림 2] 벨로다인 라이더의 주변 객체 인식


Ø 벨로다인의 입장 발표에 따르면 차량에 사용된 라이더 HDL-64E 모델은 사고 당시와 같은 상황 조건에서 보행자와 자전거를 확실히 구분할 수 있다고 주장하였음


Ø 아울러 라이더의 역할은 객체의 감지이며 회피 조치를 취할 판단은 시스템이 하는 것이라고 덧붙이며, 우버의 자율운전 소프트웨어에 문제가 있을 것이라는 견해를 밝혔음


Ø 벨로다인의 주장에 대해서는, 자율운전 차량이 사고 당시 속도를 줄이거나 회피하려는 동작을 전혀 취하지 않은 것을 보면 인식이 안된 것으로 보아야 한다는 반론이 있음


ž 로이터 통신은 전문가 취재를 통해, 라이더의 기술적 결함은 아니지만 우버가 라이더의 개수를 줄임에 따라 사각지대가 발생했을 가능성에 무게를 두고 보도하였음


Ø 우버의 자율주행 테스트 차량은 원래 포드의 퓨전 세단으로 라이더 7, 레이더 7, 카메라 20대가 장착돼 있었음


Ø 우버는 지난 2016년에 베이스 차량을 볼보 XC90 SUV로 변경하면서, 레이더는 10개로 늘렸지만 라이더는 1, 카메라는 7대로 줄인 바 있음


<자료> Reuter


[그림 3] 우버 자율주행차의 센서 구성 변경


Ø 차량 주변을 탐지하는 라이더는 센싱 능력이 우수하나 부품 가격이 매우 높고, 벨로다인이 거의 독점 공급하고 있어 자율운전 차량의 가격이 낮아질 수 없는 원인으로 꼽히고 있기 때문에 우버의 변경 조치는 비용절감이 목적이었을 것임


Ø 그러나 로이터 통신에 따르면 벨로다인의 라이더는 360도를 모니터 할 수 있지만 수직 감지 범위가 좁아 낮은 곳에 위치한 물체를 감지하기 어려운 단점이 있고, 따라서 지붕에 1대만 설치할 경우 차량 주위 약 3미터의 사각지대가 발생할 수 있다고 함


Ø 사각지대 가능성에 대해서는 벨로다인 관계자도 인정했고 그렇기 때문에 다수의 라이더가 필요하다는 설명도 덧붙였다고 하는데, 웨이모가 차량에 6대의 라이더를 장착한 것에 비하면 우버가 라이더를 1개로 줄인 것은 센싱 관점에서 중대한 결함이라고 로이터는 지적


ž 그러나 자율주행차의 센서가 라이더만 있는 것은 아니기 때문에, 어떻게든 보행자는 인식했을 것이라 보는 것이 대체적인 견해임


Ø 우버는 지붕에 7대의 카메라를 탑재하고 있는데, 전방을 담당하는 카메라는 근거리와 원거리를 모두 커버하며, 앞쪽에 있는 다른 자동차가 감속하는 것을 파악하는 동시에 보행자를 인식하고 또한 신호등과 도로 표지판을 읽는 데도 사용됨


Ø 사고 직후 뉴스 보도에 따르면 사고 장소는 야간이지만 가로등이 설치되어 있어 일정한 밝기임을 알 수 있고, 카메라의 성능은 정확히 공개되어 있지 않지만 다이내믹 레인지가 넓어 사고 여성을 파악했을 가능성이 높음


Ø 자율운전 제어 ​​카메라와는 별도로 대시보드에 모니터용 카메라도 구비되어 있어 전방과 차량 내부를 촬영하게 되는데, 템피시 경찰이 공개한 대시보드 카메라 영상을 보면 보행자가 도로 왼쪽에서 오른쪽으로 건너고 있는 것이 정확히 포착되어 있음



Ø 영상을 보면 카메라가 보행자를 인식했음에도 또한 자동차는 감속하지 않고 그대로 직진 한 것도 확인할 수 있으며, 또한 위험 시 개입해야 할 운전자가 전방을 주시하지 않고 있다가 사고 소리에 상황을 알아 차리고 놀라는 장면도 확인할 수 있음


<자료> ABC News


[그림 4] 테스터 운전자의 전방 주시 태만


Ø 한편 우버 차량에는 라이더와 카메라 외에 주위 360도를 모니터 하는 레이더도 탑재되어 있는데, 레이더는 주행 중인 자동차나 정차하고 있는 자동차 등을 인식하며 도플러 효과를 이용하여 객체의 이동 속도를 파악하는 역할을 함


Ø 일반적으로 레이더의 해상도가 낮고 핀 포인트에서 객체의 위치를 ​​특정 할 수 없기 때문에 레이더 단독으로만 센싱하지는 않으며, 또한 레이더가 보행자를 인식해도 알고리즘은 이 정보만으로 브레이크를 걸도록 프로그램 되어 있지는 않음


Ø 따라서 사고 당시 차량이 속도를 줄이거나 정지하지 않았다고 해서 레이더가 보행자를 인식하지 데 실패했다고 볼 수는 없다는 것이 전문가들의 견해임


ž 종합적으로 볼 때, 우버의 센서가 보행자를 인식했을 가능성은 높은데 그럼에도 불구하고 차량이 회피 조치를 취하지 않았는지가 원인 규명의 핵심이 될 것으로 보임


Ø 현재 사고 원인 조사를 하고 있는 국가교통안전위원회(NTSB)는 주로 항공기 사고를 담당하나 교통 사고 중 사안이 중대할 경우 맡기도 하는데, 자율운전 자동차 사고처럼 자동차의 소프트웨어 분석이 요구되는 고도의 사안인 경우도 NTSB가 원인을 규명함


Ø NTSB에 의한 조사의 최종 결론이 나오려면 시간이 좀 더 걸리겠지만, 우버의 자율운전 시스템에 심각한 문제가 있다는 말들이 언론을 통해 흘러 나오고 있음


Ø 뉴욕타임스에 따르면 우버 차량의 Disengagement(디스인게이지먼트, 자율운전 기능 해제 조치)의 빈도는 13 마일당 1번이라고 하는데, 디스인게이지먼트는 차량에 문제가 발생하여 테스터 드라이버가 자율운전 모드를 해제시키는 조치를 의미함


Ø , 디스인게이지먼트가 실행되었다는 것은 자율운전 자동차가 비정상 상태에 있음을 의미하며 결함 발생 건수로도 해석할 수 있는데, 우버 차량의 경우 이것이 13 마일마다 발생했다는 것이므로 시스템이 아직 불완전한 상태에 있다고 추정할 수 있음


Ø 자율운전 차량의 도로 주행 테스트가 주로 이루어지는 캘리포니아주의 교통당국은 매년 각 기업의 테스트 결과를 취합해 자율운전 차량 디스인게이지먼트 보고서를 공표하는데, 우버의 경우 2017년 보고서에 등재되어 있지 않아 정확한 기술 수준 추정이 어려웠음


Ø 이번 뉴욕타임스의 보도로 우버의 디스인게이지먼트 빈도가 알려진 것인데, 13 마일당 1회 발생했다는 결과는, 5,600 마일당 1회가 발생한 웨이모(Waymo) 1,250마일당 1회가 발생한 GM과 비교해 볼 때 기술 완성도 면에서 큰 격차가 있는 것임


[1] 2016.12~2017.11 캘리포니아 주 내 자율운전 테스트 기업의 디스인게이지먼트 비교

기업명

디스인게이지먼트() [A]

주행거리(마일) [B]

[B] / [A]

Waymo

63

352,544.6

5,596

GM Cruise

105

131,675.9

1,254

Drive.ai

93

6,127.6

255

Baidu

42

1,949.14

217

Nissan

24

5,007

207

Zoox

14

2,244

160

Telenav

50

1,581

32

Delphi Automotive

81

1,810.6

22

우버

N/A

N/A

13

NVIDIA

109

505

5

BMW

598

1,595

3

Valeo North America

215

574.1

3

Mercedes Benz

773

1,087.7

1

<자료> Department of Motor Vehicles, State of California, 우버의 기록은 New York Times 보도


ž 우버 자율운전 시스템의 기술 결함으로 초점이 맞춰지는 가운데, 이것이 우버 만의 문제인지, 자율운전 알고리즘에 내재한 본질적인 문제인지에 대한 논의도 이루어지고 있음


Ø 사고 시간이 야간이었고, 사고 지역이 횡단보도가 아닌 구역이었기 때문에, 자율주행 차량이 보행자 주의가 필요하지 않다고 인식했을 가능성이 있다는 분석도 있음


Ø 워싱턴 포스트는 로보틱스 전문가인 듀크 대학의 미시 커밍스 교수의 말을 빌려, 자율주행차량의 컴퓨터 시스템이 보행자, 특히 횡단보도 바깥의 보행자까지 인식하는 것은 아니라는 점을 지적하였음


Ø 자율운전 차량은 인식-판단-제어의 순서로 작동하는데, 센서가 비록 무언가 객체를 인식했다 하더라도, 한밤 중에 횡단보도가 아닌 곳에서 자전거를 끌고 가는 사람이었던 만큼 보행자로 구별하지 못했을 가능성이 있다는 것임


Ø 커밍스 교수는 자율주행 시스템은 귀납적 추론을 할 수 없으므로, 특정 장소, 특정 시간대의 어떤 모습을 추측할 수 없다고 설명하며, 자율주행 차량이 도로의 복잡한 변수를 파악하지 못하기 때문에 사고가 날 위험이 높다는 점을 지적하고 있음


Ø CNN 역시 자율주행차가 보행자와 자전거를 끌고 있는 사람을 구분하는 것은 어려운 작업이라며, 자율주행차의 성능이 고속도로처럼 신호가 없고 상황이 단순한 곳에서는 완전해 보이지만, 시내주행 테스트는 조심스럽게 접근할 수밖에 없다고 보도하였음


Ø 그러나 이런 지적에 대해서는, 자율운전 시스템은 보행자나 다른 차량들이 교통법규를 정확히 준수했을 때만 작동할 수 있다고 말하는 잘못된 주장이라는 반론도 있음


Ø 웨이모와 GM뿐 아니라 사고를 낸 우버를 포함해 자율운전차 개발업체들은 사고 위험을 줄이기 위해 가상주행, 시험주행 등으로 주행 데이터를 수집하고 보행자의 무단 횡단 등 최대한 많은 교통 변수를 파악하기 위해 노력하고 있다는 것임


Ø 또한 사고 영상을 보면 속도를 줄이거나 차선을 바꾸려는 시도가 전혀 없었는데, 시스템이 비록 보행자인지 아닌지 구분할 수 없었을 수는 있으나, 앞쪽에 무언가 있는데 정확히 무엇인지 모를 경우 계속 직진하라고 알고리즘을 설계하지는 않았을 것이란 반박임


Ø , 이번 사고의 원인은 센서에서 제대로 인식을 하지 못했거나, 만일 인식을 제대로 했다면 알고리즘 설계의 잘못이라기 보다는 단순히 소프트웨어가 순간적으로 작동을 하지 않았을 것으로 보는 것이 합리적이라는 것임


ž 이런 면에서 볼 때, 이번 우버 차량의 인명 사고는 각 개발업체의 자율주행 시스템 알고리즘이 어떤 기준으로 설계되어 있는지 공개하도록 요구하는 계기가 될 수도 있음


Ø 만일 우버 차량의 사고가 센서 미인식이나 소프트웨어의 작동 오류가 아니라 알고리즘에 의한 것이라면, 가령 가능성은 낮지만, 횡단보도가 아닌 구역에서는 보행자 주의가 필요하지 않다는 식으로 프로그래밍이 되어 있는 것이라면 이는 심각한 문제가 될 수 있음


Ø 우버의 경우 작년 3월에 자율주행 차량이 전복되는 사고가 있었는데, 당시 신호가 노란색으로 변하는 순간 교차로에 들어선 차량이 가속했다는 증언이 나오면서, 노란색 신호에서는 속도를 올려 통과하라고 프로그래밍 돼 있을 가능성이 있다는 보도가 나온 바 있음


Ø 교통 법규에서 교차로 진입 시 노란색으로 불이 바뀌면 빠르게 통과하라고 되어 있기 때문에 우버의 알고리즘이 그렇게 프로그래밍 되어 있다고 해서 비판할 수는 없을 것임


Ø 그러나 교차로는 매우 복잡한 상황이 벌어지는 곳이기 때문에, 현재 기술 수준에서 노란색 신호로 바뀌는 순간 무조건 가속해서 통과하라고 프로그래밍 하는 것이 적절한 지에 대해서는 사회적 논의가 필요하며 각 기업의 판단에만 맡길 수 없다는 지적도 있음


Ø 이는 비단 우버 만의 문제는 아니며 자율운전차를 개발하는 모든 기업에 해당하는 것으로 각 기업이 어떤 기준으로 알고리즘을 프로그래밍 하는지 밝혀야 한다는 목소리가 높지만, 교통사고시 책임 소재 등의 이슈와 맞물려 있어 완전히 공개되지 않고 있는 상황임


Ø 자율운전차에 대한 논의에서 빠지지 않는 트롤리 딜레마, 즉 타인의 생명과 자신의 생명 중 하나를 선택해야 할 때 자율운전차가 어떤 선택을 하도록 프로그래밍 할 것인지, 혹은 알고리즘을 교육할 것인지는 쉽사리 합의에 이르기 어려운 난제임


<자료> Sean Lee


[그림 5] 트롤리 딜레마


Ø 트롤리 딜레마의 경우 현재는 차량 제조사마다 다른 윤리적 지침을 제시하고 있는데, 웨이모의 경우 어떤 선택이 더 나은 것인지 판단할 수 없지만 약자로 판단되는 보행자에 초점을 맞추고 있다는 입장임


Ø 반면 메르세데스 벤츠는 차 안의 사람을 보호할 것이라는 입장을 밝히고 있으며, 독일연방교통부의 경우는 사고를 피할 수 없는 상황에서 자율주행차가 어떤 선택을 해야 하는 것인지 결정할 수 없다고 입장임


Ø 자율주행차의 테스트 장소가 교통 흐름이 단순한 고속도로에서 이제 보다 복잡한 시내 주행으로 옮겨오고 있는 중이기 때문에, 어쩌면 자율주행차에 의한 사고는 계속 발생할 수 있을 텐데, 그 과정에서 알고리즘에 대한 공개 요구 역시 보다 거세질 수 있을 것임


ž 자율주행차의 상용화에 대한 기대가 높아지고 있는 상황에서 발생한 이번 인명 사고는 자율주행 기술의 신뢰도에 대해 다시 한번 되짚어 보는 계기가 되고 있음


Ø 자율주행차의 시가지 주행 테스트에 관대한 애리조나주에서도, 이번 사고 직후 우버의 시험 주행 중지 명령을 내렸음


Ø 애리조나 주지사는 사고의 원인이 확실히 우버 측에 있다고 말함으로써 엄격한 입장을 취해 나갈 것임을 시사하였으며, 우버가 앞으로 애리조나에서는 자율주행 테스트를 재개할 수 없다는 말도 나돌고 있음


Ø 이는 비단 우버에 한정한 이야기는 아니며, 애리조나뿐만 아니라 다른 주에서도 향후 자율운전에 대한 규제, 특히 시가지 주행에 대한 규제는 엄격해질 것으로 전망되고 있음


Ø 사고 직후 자율주행 기술 개발업체 스스로 테스트에 신중한 입장을 보이기도 하는데, 엔비디아의 경우 안전이 보장될 때까지 자율주행 시험을 중단한다고 발표하였음


Ø 엔비디아는 사고 직후 우버 차량이 엔비디아의 자율주행 기술을 적용하고 있었다는 보도가 나오며 곤경에 처하기도 했으나, 엔비디아의 젠슨 황CEO는 우버와 협력하고 있는 것은 사실이나 우버가 독자적인 인식 및 제어기술을 개발 중이었다고 해명한 바 있음


Ø 공교롭게 엔비디아는 사고 후 열흘 만에 개최된 자사 개발자 컨퍼런스 GPU Technology Conference(GTC) 2018를 맞이하게 됐는데, 적극적으로 자신들의 자율운전 기술 홍보에 나설 수 없는 상황이 되었음




Ø GTC 2018에서 스웨덴의 스타트업 아인라이드 트럭(Einride Truck)은 올해 가을 무인 트럭 T-pod(T-)을 상용화한다고 발표했는데, T-팟은 미국 자동차기술협회가 정한 레벨5의 최고 수준 자율운전을 지향함



Ø T-팟은 고속도로에서는 레벨5로 주행하지만 비상시에는 담당자가 원격으로 조작하며, 일반 도로에 들어서면 항상 무선 통신을 통해 원격으로 조작하게 되는데, 레벨4~5의 차량 개발을 위한 엔비디아의 드라이브 PX(Drive PX) 인공지능 시스템을 채택하고 있음


Ø T-팟을 비롯해 엔비디아는 GTC 2018 행사에서 자율운전 기술에 대해 자신감을 내비치기도 했지만, 이번 우버 사고와 연루설도 있고 자율운전에 대한 부정적 여론이 커진 상태이므로 당분간 도로 주행 테스트를 자제하며 기술을 점검하겠다는 입장을 표명한 것


ž 전문가들은 이번 사고로 자율주행차 개발이 중단되지는 않겠지만, 현재의 개발 관행에 큰 변화를 가져올 것이며, 기술력의 차이에 따라 지원이 차등화될 가능성을 점치고 있음


Ø 이번 사망 사고로 인해 자율주행차량은 아직 복잡한 변수에 취약하다는 점이 드러난 셈이라는 지적이 있긴 하지만, 미국 현지에서는 그럼에도 자율주행 시험 주행을 계속 이어가야 한다는 주장이 훨씬 많은 편임


Ø 자율주행차가 이상 상황에 대비한 메커니즘이 있긴 하지만 더 많은 변수를 감안해 판단하기 위해서는 결국 더 많은 테스트를 할 수 밖에 없으며, 시뮬레이션 주행을 통한 알고리즘 교육도 강화해야 하지만 도로 위 시험 주행의 지속이 중요하다는 것임


Ø , 현실적으로 자율주행 개발업체들 사이에 기술 격차가 있다는 것이 수치로 확인되고 있느니만큼, 도로 주행 허가를 위한 기준을 설정할 필요가 있다는 주장이 힘을 얻고 있으며, 이와 맞물려 개발업체들의 도덕성에 대한 문제 제기도 이루어지고 있음


Ø 인터넷 상에는 우버의 자율운전 자동차가 시가지를 경쾌하게 주행하고 있는 비디오가 많이 있으며 이는 기술이 완성된 것처럼 보이게 하는데, 이번 사고를 통해 실제 우버의 시스템은 미완성이고 시가지를 달리기에는 위험성이 높다는 평가와 증언들이 나오고 있음


Ø 우버는 자율주행차량의 시험 주행을 위해 약 5만평에 이르는 가상도시 알모노(Almono)를 만들었다고 알려지는 등 외부적으로 기술 개발 수준이 높다는 인상을 주고 있으나, 디스인게이지먼트가 13마일당 1회라는 사실은 매우 어려움을 겪고 있음을 방증함


Ø 우버의 테스터들도 이전에 유사한 상황이 많았음을 증언함에 따라 우버가 이런 기술 수준으로 시내 주행 테스트를 실행에 옮긴 데 대한 비난의 목소리도 커지고 있음


Ø 또한 자율운전 기술의 완성도를 너무 신뢰한 나머지 전방 주시 의무를 게을리 할 만한 상황이 전혀 아니었음에도 한눈을 판 테스터와, 테스터들에 대한 교육을 철저히 하지 않은 우버에 책임을 묻는 사람들도 많음


Ø 우버는 향후 자율운전 기술 개발과 테스트를 어떤 식으로 전개할 것인지에 대한 질문을 받고 있는데, 이는 우버뿐 아니라 다른 기술 개발업체에도 해당되는 것이며, 개발업체들의 답변과 상관없이 교통당국이 나름의 허가 기준을 정할 가능성이 매우 높아지고 있음

※ 아래 글은 정보통신기술진흥센터(IITP)가 발간하는 주간기술동향 1836호(2018. 3. 7. 발행)에 기고한 원고입니다.


▶ IITP에서 PDF 포맷으로 퍼블리싱한 파일을 첨부합니다. 가독성이 좋으니 참고하시기 바랍니다.

구글 자율운전차의 강력한 대항마로 부상한 GM의 &lsquo;크루즈 AV&rsquo;.pdf



[ 요 약 ]


제너럴 모터스(GM)는 2019년 양산을 목표로 완전 자율주행 자동차 크루즈 AV(Cruise AV)의 개발과 테스트에 박차를 가하고 있음크루즈 AV는 자율주행차 기술을 선도하고 있는 구글 웨이모(Waymo)를 겨냥해 대항마로 개발 중인 모델임. IT 대기업과 스타트업들이 각광받고 있는 자율운전 개발 경쟁에서 GM은 그 동안 존재감이 없었으나전문가들은 크루즈 AV가 GM은 흘러간 과거의 거인이라는 낙인을 지울 만큼 상당한 실력을 품고 있는 것으로 보고 있음



[ 본 문 ]


ž 제네럴 모터스(GM)2018 1월 미국 교통부(DOT)운전대와 페달이 없는 자율운전 자동차의 도로 주행 허가 신청서를 제출하였음


Ø 신청서에 따르면 조작부가 없는 GM 차량의 자율운전 수준은 미국 자동차기술협회(SAE)가 정의한 6단계 중 5단계인 레벨 4'에 해당하는 것으로 보이며, 제한된 조건에서 완전 자율운전의 실현을 테스트 하려는 것으로 보임


<자료> General Motors


[그림 1] 무인차량 크루즈 AV의 내부


Ø GM이 내건 조건 중 하나는 주행 지역을 좁힌다는 것인데, 고정밀 지도 데이터가 구축되어 있고 실제 차량 테스트와 분석에 의한 시뮬레이션 주행 시험을 반복해 왔던 이미 잘 알고 있는 지역에서만 주행하겠다고 밝혔음


Ø GM 2019년에 자율운전 차량의 양산을 시작한다는 계획인데, 양산 초기 판매 모델은 웨이모(Waymo)와 비슷한 형태, 즉 차량 공유나 카풀 등 배차 서비스 기업들의 업무 차량으로 공급될 예정임


ž GM은 크루즈 AV가 배차 서비스와 결합될 경우, 보다 많은 사람들이 자율운전 차량을 경험함으로써 이해도가 높아질 것으로 기대한다는 입장을 밝히고 있음


Ø 크루즈 AV가 배차 서비스에 이용될 경우 사용자는 스마트폰으로 무인 차량을 호출하게 되고, 승차지는 목적지는 제한된 범위 내에서 선택하는 형태가 될 것으로 보임


Ø 웨이모에 이어 GM도 배차 서비스를 우선 타게팅 하는 것은 미국에서 배차 서비스 이용자가 급격한 증가하고 있기 때문으로, 서비스 업체 입장에서는 크루즈 AV를 배차 서비스와 조합하며 운전자 확보 없이도 이용자를 쉽게 늘릴 수 있는 이점이 있음


Ø 또한 GM에 따르면 배차 서비스에 크루즈 AV를 공급할 경우 불특정 다수의 사람이 탑승할 기회를 갖게 되므로, 보다 많은 사람들이 자율운전 기술에 대해 직접 경험하고 안정성과 편의성을 판단할 수 있게 되는 마케팅 효과를 기대할 수 있음


ž 배차 서비스에 크루즈 AV를 우선 공급하는 것이 자동차를 최대한 팔아야 하는 GM에 손해가 될 수도 있으나, 신차 시장이 줄어드는 상황에 적극 대응하기 위한 것으로 보임


Ø 크루즈 AV은 부품 비용이 동급 엔진의 차량 모델에 비해 수천만 원은 높기 때문에 판매가가 높을 수밖에 없으며, 따라서 개인에 판매할 경우 살 수 있는 고객의 수는 제한됨


Ø 부품 가격이 높은 이유는 크루즈 AV에 탑재하는 주요 환경 인식 센서의 수 42개에 이르고 고성능 컴퓨터도 여러 대 탑재되기 때문


Ø 또한 운동제어부의 부품 모두 어느 한 계통이 고장 나도 정상적으로 주행할 수 있는 기능안전(Fail Operational) 방식으로 되어 있어 부품 수가 크게 늘어나기 때문


Ø 게다가 크루즈 AV는 쉐보레(Chevrolet) 브랜드의 전기자동차 볼트(Bolt)를 기반으로 개발 중인데, 볼트는 소형차이지만 고가의 대용량 배터리를 탑재하고 있어 판매 가격이 유사 차종에 비해 약 3 7천 달러 가량 높은 편임


<자료> General Motors


[그림 2] 볼트 EV 기반의 크루즈 AV


Ø 크루즈 AV의 가격이 개인이 구매하기엔 부담스럽지만, 배차 서비스 업체라면 운전자 인건비가 들지 않고 가동 시간을 늘릴 수 있는 장점을 기대할 수 있어 추가 매입 가격이 얼마나 단기간에 회수될 지는 두고 봐야 하지만 수요는 있다는 평가


Ø GM 입장에서는 배차 서비스 업체에 차량을 판매하는 것이 개인들에게 판매하는 것에 비해 손해이지만, 당장은 개인 수요가 불투명해 배차 서비스 업계에 마진을 낮추더라도 대량으로 공급하는 전략을 택할 것이란 게 자동차 산업 애널리스트들의 전망임



Ø 한편 이윤이 낮아짐에도 GM이 배차 서비스용 무인 차량을 우선 개발하는 것은 배차 서비스로 인해 향후 미국의 신차 시장이 줄어들 것으로 전망되기 있기 때문이란 분석도 있음


Ø KPMG에 따르면 2030년 미국의 신차 판매 대수는 1,620만 대로 2016년에 비해 130만 대가 줄어들 것으로 예측했는데, 내역을 보면 배차 서비스 등과 결합된 무인 차량이 300만대 규모로 성장하는 반면 세단 등 개인 소유 차량은 약 420만 대로 크게 줄어든 전망


Ø 만약 예측대로 시작이 변해간다면 개인 대상 판매가 중심인 GM 등 자동차 업체에 타격이 클 것이며, 게다가 웨이모를 비롯한 IT 대기업들이 새롭게 성장하는 시장을 선점할 것이기 때문에, GM으로서는 무인 택시 개발이 공격인 동시에 방어 전략인 측면이 있음


<자료> KMPG


[그림 3] 2030년 미국 신차 시장 전망


ž 구글 등에 가려져 잘 알려지지 않았지만 GM의 자율운전차 연구개발의 역사는 오래 되었으며, 자동차 업계에서는 자율운전 연구의 선구자로 인정받고 있음


Ø 80년 전인 1939년 뉴욕 국제 박람회에서 GMFuturama(퓨처라마)라는 제목의 세밀한 디오라마 연출을 통해 고속도로를 자동으로 달리는 자동차의 미래 이미지를 선보인 바 있는데, 자율주행이 IT 기업에 의해 제시된 개념은 아님을 엿볼 수 있음



Ø 비교적 최근에도 자율운전 기술의 전환점에 GM이 밀접한 관련이 있는데, 치열한 기술 경쟁의 계기가 된 2007DARPA(방위고등연구계획국) 개최 자율운전차 경주 대회에서 우승 한 카네기 멜론 대학에 차량을 제공하고 개발을 도운 곳이 GM이었음


Ø 그러나 당시 카네기 멜론 팀의 개발 리더였던 크리스 우름슨은 대회 종료 후 구글에 들어가는데, GM도 초빙했다고 하나 구글에 납치되다시피 했다는 후문이며, 이런 배경을 놓고 보면 GM에게 구글은 악연의 적수라 할 수 있음


ž GM은 크루즈 AV의 개발에 있어 안전성과 신뢰성을 중시하고 있음을 강조하고 있는데, 자동차 양산 경험이 없는 웨이모와 차이를 가장 잘 보여줄 수 있는 지점으로 보기 때문


Ø GM은 크루즈 AV 1983년 설립된 미시간주 오리온 공장에서 양산할 계획인데, 수십 년에 걸쳐 발전시켜 온 설비 및 공정을 통해 생산함으로써, 자체 자동차 공장이 없는 웨이모 등 ICT 기반 신흥 자동차 업체들과 차별성을 보여준다는 전략임


Ø 실제 안전성과 신뢰성은 자율운전 자동차의 판매에서 가장 중요한 요소가 될 가능성이 높은데, 가트너의 2017년 설문 조사에서 55%의 응답자가 기술적인 결함에 대한 불안을 이유로 자율운전 자동차를 타고 싶지 않다고 답했음


Ø 이는 자동차의 안전성이 곧 생명과 직결되기 때문으로, 향후 안전성과 신뢰성에 관해 소비자의 마음을 얻을 수 있는지 여부가 자율운전 차량의 매출을 크게 좌우할 것임을 시사


Ø GM은 개발 방식에 있어서도 웨이모에 비해 안전성과 신뢰성에서 우위에 있다고 어필하고 있는데, 하드웨어와 소프트웨어를 모두 자사에서 개발한다는 것을 근거로 들고 있음


Ø GM과 달리 현재 웨이모는 분업 체계를 선택하여, 웨이모가 소프트웨어를 담당하고 파트너인 미국 피아트·크라이슬러·오토모빌스(FCA)가 차량의 개발과 생산을 담당하고 있음


Ø 이에 대해 GM은 방대한 소프트웨어와 수만 개 부품의 하드웨어로 구성되는 자율운전 차량의 특성상, 분업은 신뢰성 높은 시스템의 개발과 평가를 원활하게 진행하기가 어려운 방식이라 주장하고 있음


Ø GM 2016년에 자율운전 소프트웨어를 개발업체인 크루즈 오토메이션(Cruise Automation)을 약 10억 달러에 인수해 GM 내부로 포섭한 바 있음


Ø 이를 통해 하드웨어와 소프트웨어 팀 간의 긴밀한 협력을 통해 모든 시스템의 잠재적인 고장 패턴을 분석하여 안전하고 신뢰할 수 있는 무인 자동차를 생산할 수 있게 되었다는 것을 자신들의 장점으로 어필하고 있음


ž 주행 성능 면에서도 GM은 웨이모에 대해 우위라고 은근히 주장하는데, 2019년에 시작할 배차 서비스를 주행 환경이 복잡한 도심에서 시작할 것임을 내비치고 있기 때문


Ø 웨이모는 2018년부터 애리조나주 피닉스의 교외 지역에서 무인 차량을 이용한 배차 서비스를 정식 시작할 계획인데, 피닉스는 도심에 비해 교통량이 적고 도로 정비가 잘돼 있기 때문에 사고가 일어날 가능성은 상대적으로 낮은 지역이라 할 수 있음


Ø GM은 상용화 시점은 웨이모에 비해 늦었지만 교외에서 서비스를 하는 웨이모에 비해 주행 성능은 자신들이 뛰어나다는 것을 보여주려 하고 있음


Ø GM은 도로 주행 시험 허가 신청서와 함께 공개한 자료(☞클릭) 를 통해 도심인 캘리포니아주 샌프란시스코와 교외 지역인 피닉스 근교의 교통 환경이 어떻게 차이 나는지를 의도적으로 강조하였음


Ø 긴급 차량의 운행대수나 좌우 회전 교차로의 수가 샌프란시스코에 훨씬 많다는 것을 강조한 것인데, 주행 환경이 쉬운 피닉스에서 서비스를 시작하는 웨이모를 강하게 의식한 것이 분명해 보임


Ø GM은 현재 샌프란시스코 이외에 미시간주 디트로이트에서 도로 주행 테스트를 하고 있는데, 향후 대도시 뉴욕에서도 테스트를 시작할 예정이며, 도심 중심의 주행 테스트에 주력함으로써 웨이모를 추격한다는 전략임


[1] GM과 웨이모의 자율주행 테스트 환경의 비교(자율주행 1천 마일 당 빈도)

운행 조작/시나리오

샌프란시스코(GM)

피닉스 교외(웨이모)

비율

좌회전

1,462

919

1.6:1

차선 변경

772

143

5.4:1

공사로 인한 차단 차선

184

10

19.1:1

반대편 차선을 이용한 통행

422

17

24.3:1

공사 현장 주행

152

4

39.4:1

응급 차량

270

6

46.6:1

<자료> General Motors


Ø 반면 GM은 자율주행 테스트 총 주행거리를 밝히고 있지는 않은데, 주행거리는 지금까지지 누적 400만 마일을 테스트한 웨이모가 자신들의 안전성과 신뢰성을 어필하는 요소로 강조하는 포인트이고, GM이 단기간에 따라잡기란 불가능하기 때문


ž GM의 기술에서 핵심 개념은 중복 설계(Redundancy)인데, 안전과 신뢰성을 위해 주요 기능의 구동이 실패한 경우에도 주행을 계속할 수 있는 구조를 갖추고 있음


Ø IT 시스템 구축에서 중복 설계(리던던시)는 비용을 높이더라도 무중단 가동 환경을 만드는 것인데, 트레이드-오프 관계에 있는 비용과 안전성의 두 요소를 놓고 GM은 자율운전차 판매에서 안전이 가장 중요하다고 생각해 비용을 높여 안전성을 선택한 것으로 보임


Ø GM에 따르면 크루즈 AV의 자율운전 시스템에는 인식(Perception)-주행 계획(Planning)-차량 제어(Control)의 세 가지 주요 기능이 있는데, 모두 중복 설계 되었다고 함


Ø 예를 들어 인식 기능은 차량 주변 객체의 위치와 속도, 방향, 종류를 계산하는 것인데, 핵심은 차량 주위 360도를 인식하는 센서 군으로, 작동 원리가 다른 3 종류의 센서를 사용하는 것에 더해 동일한 장소를 복수의 센서로 감지하도록 중복 설계하였음


ž 크루즈 AV는 라이더(LIDAR, 적외선 레이저 센서) 5, 카메라 16, 밀리파 레이더 21개를 탑재했는데, 한 센서가 작동하지 않아도 다른 센서로 주위 360도 인식 기능을 유지함


<자료> GM


[그림 4] 크루즈 AV 지붕의 5대 라이더 센서


Ø 3종류의 센서 중 핵심은 라이더로, 라이더 하나 만으로도 안전하게 주행할 수 있는 기본 기능을 구현할 수 있는데, GM 2017 10월 라이더를 개발하는 스타트업 스트로브 (Strobe)를 인수하고 기술 고도화에 투자하고 있음


Ø 밀리파 레이더는 주로 이동하는 물체의 감지를 담당하며 라이더를 지원하는데, 전파의 반사에 의해 차량과 이동하는 객체의 상대 속도를 측정하는 데 강점이 있음


Ø 라이더와 밀리파 레이더는 각각 레이저()와 전파를 이용해 측정 원리가 다르기 때문에 레이저의 반사율이 낮은 경우 전파의 반사로 보충하는 보완 관계가 형성됨


Ø 카메라는 물체의 색상과 모양을 고화질로 감지 할 수 있어 거리와 속도를 감지하기 보다 주로 물체의 분류와 추적에 사용하지만, 여러 대의 카메라로 거리를 감지하는 기능을 갖출 수 있어 라이더가 구동하지 않을 경우 어느 정도 기능을 대체할 수 있음


Ø 인식 기능에는 센서 군에 의한 물체 감지 외에도 자기 위치 추정(Localization) 기능이 포함되는데, 이는 자율운전의 근간으로 만일 실패하여 추정의 정확도가 크게 떨어지면 자율운전이 불가능하므로 GM은 여러 방법으로 추정이 가능하도록 중복 설계하고 있음


Ø 가령 내비게이션 기능에서는 일반적인 GNSS(위성위치확인시스템)와 자이로 센서를 결합하는 방법과 라이더 등으로 측정한 특징물과 고정밀 지도 데이터의 위치를 ​​대조하는 방법 등을 동시에 이용해 자기 위치를 추정하고 있음


ž 인식 결과를 바탕으로 주행 계획을 수립하게 되며, 여기에서 중요한 것은 행동예측과 보이지 않는 영역에 대한 고려인데, GM은 이 기능에 딥러닝을 적용하였음


Ø 주행 계획에는 내비게이션과 마찬가지로 목적지까지의 경로를 계산하는 매크로 주행 경로 결정과 사고 확률을 줄이기 위한 마이크로 주행 경로 결정이 포함되는데, 최근 중요성이 강조되는 것은 마이크로 주행 경로 결정임


<자료> GM


[그림 5] 마이크로 주행 경로의 결정


Ø 마이크로 주행 계획은 우선 센서에서 인식한 주변 객체의 3 차원 모델을 구축해 정밀 지도 데이터에 가상으로 배치한 다음 객체의 종류와 속도 등의 계산 결과를 바탕으로 지도 데이터에서 객체 모델의 움직임을 예측하는 것임


Ø 차량과 보행자, 트럭, 자전거 등의 종류에 따라 움직이는 방법이 매우 다양하기 때문에 이를 고려하여 행동 예측에 반영시키게 됨


Ø 그런 다음 인식 기능으로 계산한 주행 한계의 결과와 조합하여 차량이 달릴 범위를 결정하게 되는데, 주행 가능 범위 내에서 사고의 위험이 낮고 빠르게 달릴 수 있는 경로를 그리고 그 경로에 따라 차량이 움직이도록 함


Ø 주행 한계의 계산은 인공지능(AI)의 일종인 딥러닝(심층 학습)을 사용하는데, 주행 한계는 일반적으로 흰색 선이나 가드 레일, 차도와 인도의 턱 등을 통해 쉽게 찾을 수 있음


Ø 그러나 외곽 도로의 경우 흰색 선이 없어 주행 한계를 이해하기 어려운 곳이 자주 나타나기 때문에, 주행 한계를 결정할 때 달릴 수 없는 영역으로 분류된 곳의 수 많은 이미지를 이용해 훈련시킨 AI의 판단이 효과를 발휘할 수 있음


Ø 주행 경로의 결정에서 GM은 특히 센서에 보이지 않는 영역의 처리를 위한 연구를 중요시하고 있는데, 비나 안개, 다른 객체에 가려 보이지 않는 영역을 파악하고 안전한 경로를 결정하는 데 연구 결과를 적용하고 있음


Ø 가령 지도 데이터의 보이지 않는 영역에 가상의 깃발(플래그)을 세우고, 그 깃발 지점에서 물체가 갑자기 튀어 나오는 위험을 계산한 후, 그 결과값을 가미하여 주행 경로를 신중하게 결정함으로써 운행의 안전도를 높이고 있음


ž 주행 계획의 계산에도 중복 설계를 하고 있는데, 경로 결정 대로 주행이 제대로 실행되지 않을 경우에 대비해 항상 여러 백업 경로를 준비해 두도록 하고 있음


Ø 크루즈 AV는 초당 10회 정도의 경로를 계산하여 이 중 가장 안전하고 빠르게 달릴 수 있는 경로 선택을 기본 원칙으로 하고 있음


Ø 그러나 예상대로 주행이 이루어지지 않을 때를 대비해, 가령 차선을 변경하는 경로를 선택했을 때 갑자기 다른 차가 변경하려는 주행 경로를 차단했을 때는 원래 차선으로 달리는 등 백업으로 준비하고 있던 경로로 즉각 전환하도록 하고 있음


Ø 주행 계획의 연산에는 통신(Networking) 기능도 활용되는데, 다른 크루즈 AV 차량이 인식한 정보를 경로 계획에 반영하는 것으로, 다른 차량이 인식한 정보를 클라우드로 통합한 후 네트워크를 통해 모든 크루즈 AV 차량이 공유하도록 하고 개발하고 있음


Ø GM은 이를 두고 한 대가 학습한 것을 모든 차량이 학습한다고 표현하는데, 일반 자동차에 없는 장점으로 크루즈 AV의 안전 운전에 크게 기여할 것으로 기대하고 있음


ž 차량 제어 기능은 주행 계획에 따라 가속과 감속, 조향을 제어하는 것인데, 차량 제어에 관련된 전기 계열 하드웨어 부품을 모두 이중화하였음


Ø 예를 들어 자율운전 기능의 주요 ECU(전자제어장치)를 두 개 탑재하는 것인데, 한 컴퓨터가 구동에 실패할 경우 동시에 계산하고 있던 다른 한쪽이 연산을 이어받게 됨


<자료> GM


[그림 6] 크루즈 AV 주요 배선의 이중화


Ø 이 때 2개의 ECU가 상호 감시하는 구조에서는 어느 쪽이 실패했는지 결정할 수 없기 때문에 GM ECU를 전체 시스템의 고장 유무를 항상 감시하는 자자가 진단 ECU를 또 하나 탑재하였음


Ø 이 진단 ECU가 있으면 다수결로 어떤 ECU가 실패했는지 결정할 수 있기 때문에, 실패한 ECU의 신호를 사용하지 않고 남아 있는 정상적인 ECU의 신호로 차량을 제어하게 됨


Ø 주요 기능의 전원 공급 장치 역시 2개의 계통을 준비하는데, 주 전원이 실패하면 백업 전원에서 주요 ECU와 인식 센서, 스티어링, 브레이크 등에 전력을 공급함


Ø 특히 브레이크에 대해서는 전용 카메라를 별도로 설치하여 일반적인 자율운전 기능 용도 이외에 자동 브레이크 기능을 추가로 탑재하고 있음


Ø 주요 ECU를 연결하는 신호선도 이중으로 하여 한쪽 통신이 끊어진 경우 다른 쪽으로 신호를 교환하도록 하고 있음


Ø 또한 확률은 낮지만 주요 부품과 백업 부품이 고장 나는 경우에 대비한 방안도 강구하고 있는데, 이 경우 페일 세이프(fail safe) 기능을 통해 안전하게 정지한다고 함


ž 크루즈 AV는 주행 계획 등에 통신 기능을 이용하고 있기 때문에, 무선 통신을 통해 해킹이 발생할 경우 중대 사고로 이어지게 되므로 GM은 보안 대책에도 주력하고 있음


Ø GM이 인수한 크루즈 오토메이션에는 자동차 업계의 화이트 해커로 가장 유명한 두 사람이 있는데, 찰리 밀러 (Chary Miller)와 크리스 발라섹(Chris Valasek)


Ø 이 둘은 2013년 도요타 프리우스를 해킹하여 주목을 받았으며, 이후 우버 등을 거쳐 크루즈 오토메이션에 일하던 중 GM의 인수로 현재는 크루즈 AV 보안 개발에 참여하고 있음


Ø 보안을 위해 GM은 소프트웨어의 취약점을 포괄적으로 분석하는 도구 및 잠재적인 위협을 업스트림(상위 공정)에서 발견하여 제거하는 위협 모델링 등을 활용 중이라고 하며, 통신에 메시지 인증 기능과 함께 침입 탐지 기능을 도입했다고 함


ž 웨이모가 크게 앞서는 듯 보이던 자율운전차 시장에 전통의 자동차 업체 GM이 강력한 대항마로 나섬에 따라 2018년 자율운전차 시장의 상용화 모멘텀은 더욱 커질 전망


Ø 웨이모는 주행거리를, GM은 주행환경의 난이도를 강조하는 것으로 나타나고 있으며, 서비스 업체와 소비자의 마음을 얻기 위한 양사의 경쟁 과정에서 기술의 발전과 소비자 인식 전환, 상용 서비스 완성도 제고가 극적으로 전개될 것으로 기대되고 있음

※ 다음 글은 정보통신기술진흥센터(IITP)가 발간하는 주간기술동향 1757호(2016. 8. 3 발행)에 기고한 원고입니다. 


▶ IITP에서 PDF 포맷으로 퍼블리싱한 파일을 첨부합니다. 가독성이 좋으니 참고하시기 바랍니다.

자율주행차의 킬러 앱은 무인택시, 자동차 산업의 격변 시작.pdf




[ 요 약 ]


차량 공유와 택시 호출 서비스 등을 제공하는 배차 서비스 업체들이 일제히 자율운전 자동차 개발에 나섰으며, 향후 무인 택시를 핵심 비즈니스로 자리매김 한다는 목표 하에 인수합병 및 업무 제휴도 적극 추진하고 있음. 이렇게 되면 소비자들은 자동차를 구입 대신 무인 택시를 호출해 이동하게 될 것이며, 자동차 산업은 차를 판매하는 시대에서 이동(ride)을 판매하는 시대로 전환해야 하기 때문에 인터넷과 소프트웨어에 의한 대격변의 시대를 맞이하게 될 임



[ 본 문 ]


◈ 배차 서비스는 공유 경제라는 화두를 사회에 던졌지만, 그 실상을 보면 독점을 위한 경쟁이 매우 격렬한 시장이며, 대규모 자금력의 싸움이 벌어지는 곳임을 알 수 있음


많은 수의 배차 서비스들은 이용 요금을 낮춰가며 고객을 유치하고 있으며, 따라서 사업은 적자를 보게 되고 이를 벤처 캐피털의 투자로 보충하는 구조로 되어 있음




<자료> South china Morning Post, 2016. 2


[그림 1] 중국 배차 서비스 시장점유율


시장점유율을 확보를 위해 기업들은 적자를 각오하고 사업을 전개하는 것이며, 우버(Uber)만 보더라도 북미와 유럽 등 선진국에서 사업은 흑자이지만, 신흥국 시장에서는 막대한 적자를 안고 있음


현재 우버의 시장 개척 목표는 중국과 인도 등 신흥국으로 이동하고 있으며, 특히 중국에서는 시장점유율 획득을 위해 대규모 자금을 투입하여 압도적 점유율로 업계 1위를 구가하고 있는 디디추싱(Didi Chuxing)에 싸움을 걸고 있음


우버가 비록 수 년 안에 흑자로 전환할 수 있다는 자체 전망을 내놓고 있기는 하지만, 현재는 중국 시장에서 연간 10억 달러의 적자를 내고 있으며, 이 때문에 우버 투자자들은 디디추싱과 휴전할 것을 요청하고 있음 


(원고 기고 이후 8월 1일, 우버 차이나가 디디추싱에 합병된다는 발표가 있었음. 우버 본사는 합병 기업의 지분 5.9%를 보유하게 될 예정이며, 이 때문에 우버가 중국에서 철수한 것이 아니라, 중국 정부의 콜택시 산업 규제가 강화될 조짐을 보이자 사업 지속 전략의 일환으로 합병을 택했다는 분석도 나오고 있음)


차량 공유 서비스의 선두주자였던 리프트(Lyft)도 사업을 전개하며 대규모 적자를 내고 있는데, 벤처 캐피털들은 적자 보전을 위한 추가 출자를 꺼려하고 있다고 함


이 때문에 리프트가 투자 은행을 통해 자신들을 인수할 기업을 찾고 있다고 하며, 이미 자동차 제조업체 등에 리프트에 대한 인수 타진이 이루어졌다는 루머도 돌고 있음


최근 GM(General Motors 은 리프트와 공동사업을 발표하며 리프트의 지분도 확보한다고 밝혔는데, 이를 두고 실제로는 GM이 리프트를 인수하는 게 아니냐는 관측도 나오고 있음


리프트가 인수자를 찾고 있는지, 투자자를 찾고 있는지는 아직 명확하지 않지만, 확실한 것은 배차 서비스를 지속하려면 상당 기간 동안 대규모 자금이 필요하다는 것


◈ 서비스 업체간 적자를 감수한 경쟁이 벌어지는 이유는, 배차 서비스의 가장 큰 차별화 요소인 최단시간 배차를 위해 최대한 많은 차량과 드라이버를 회원으로 확보해야 하기 때문


최소 대기 시간에 차를 배차하는 것이 곧 서비스 품질의 기본이 되는데, 가령 우버의 경우 현재 배차 시간은 수 분 정도이며, 향후에는 30초 이내에 하겠다는 계획을 밝히고 있음


우버가 이런 계획을 실현하기 위해서는 이용자 규모에 대응 가능한 자동차의 배치가 필요하며, 특정 지역에 충분한 대수를 확보하는 것이 관건이 됨


이상적으로는 특정 도시에서 독점적으로 또는 독점에 가까운 형태로 서비스를 제공할 필요가 있게 되는데, 이런 점 때문에 배차 서비스 시장은 본질적으로 많은 기업이 공존할 수 없다는 특성을 갖게 됨


이런 특성은 시장점유율 확보가 무엇보다 중요한 이동통신 서비스 사업과 유사하며, 따라서 배차 서비스들은 적자를 각오하고 점유율 획득에 전력을 다하고 있는 것임


◈ 이런 맥락에서 배차 서비스 기업들은 앞으로 무인 택시가 사업의 중심이 될 수밖에 없다고 보고 있는데, 드라이버의 수를 줄임으로써 운영 비용을 크게 경감할 수 있기 때문


배차 서비스는 국가에 따라 기존 택시 업계와 심각한 이해관계 갈등을 겪고 있기 때문에 드라이버의 확보가 어려운 경우도 있음


또한 배차 서비스 업계간 경쟁이 벌어지는 만큼 드라이버 확보를 위한 경쟁도 치열해지기 때문에, 드라이버의 확보와 이탈 방지가 핵심 관리 요소가 됨


드라이버의 확보와 관리가 어렵고 사업에 있어 큰 비용 발생요인이 된다면, 인간 드라이버가 없는 차량을 배치하는 것이 근본적인 해결책 중 하나가 될 수 있음


구글의 경우 교통사고 발생 원인의 80%가 사람에 있기 때문에 사고를 없애기 위해 사람이 아닌 인공지능이 운전하는 자율주행 차량을 개발했다고 밝히고 있지만, 배차 서비스 업계는 비즈니스의 비용 절감과 관리 효율성 측면에서 무인 차량의 등장을 반기고 있음


실제 우버, 리프트 등 배차 서비스 업체들은 최근 자체적으로 혹은 타 업체와 제휴를 통해 무인 택시 사업의 기반이 되는 자율주행 차량의 개발에 적극적으로 나서고 있음


◈ 세계 최대 배차 서비스 기업인 우버(Uber)는 지난 5월부터 펜실베이니아주 피츠버그시에서 자율운전 차량의 시험 주행을 시작하였음


시험에 이용한 차량은 포드 퓨전(Ford Fusion)의 하이브리드 모델로, 차량에 다수의 센서를 탑재하고 있음



<자료> BBC


[그림 2] 우버의 자율주행 시험 차량


지붕 위에 얹은 랙의 최상단에는 여러 대의 리다(Lidar, 레이저 광센서)를 탑재하고 있으며, 그 좌우 및 후방에 카메라와 레이더 등을 탑재하고 있고, 또한 앞 범퍼에도 리다를 탑재하는 것으로 알려져 있음


자동운전 모드로 주행할 때는 전담 드라이버가 운전석에 앉아 주행 상태를 모니터링하고 긴급사태 발생 시 운전을 대신함


우버의 자율운전 기술은 초기 단계로, 기술 개발 경쟁에서 선두그룹을 쫓기 위해 박차를 가하고 있으며, 도로 테스트의 목적은 안전성을 확인하려는 것으로 보행자, 자전거, 자동차 등이 뒤섞인 조건에서 안전하게 주행할 수 있음의 입증에 주력하고 있음


◈ 우버는 시험 주행에 앞서 작년 2월에 카네기 멜론 대학과 자율운전 기술 및 지도제작 기술을 공동으로 개발한다고 발표한 바 있음


우버는 연구개발센터인 우버 ATC(Uber Advanced Technologies Center)를 설립하고 여기에서 카네기 멜론 대학의 연구팀과 공동 연구를 진행하고 있는데, 연구 대상 분야는 소프트웨어, 기계, 로봇, 기계 학습 등임


5월부터 주행을 시작한 우버의 시험 차량은 자율운전 기능 외에 상세한 지도를 작성하는 기능도 실행하고 있음


카네기 멜론 대학은 스탠퍼드 대학과 더불어 미국 자율운전 기술의 초석을 쌓고 있는 곳으로, 우버는 이 대학과 파트너십을 맺음으로써 관련 기술 개발이 단숨에 진행될 수 있을 것으로 기대되고 있음


한편 우버는 카네기 멜론 대학과 제휴 체결 직후, 대학에서 한꺼번에 40명의 연구원들을 우버로 끌어 왔고, 이런 기술개발 방식 때문에 대한 곱지 않은 시선을 받고 있기도 함


◈ 우버의 뒤를 쫓고 있는 리프트는 자율운전 기술을 독자 개발하는 것이 아니라, GM과 공동 개발하는 길을 선택하였음




<자료> Bidness Etc


[그림 3] 리프트에 대한 GM의 투자


GM은 올해 1월 리프트의 지분 10%5억 달러에 인수한다고 발표하며, 리프트와 공동으로 자율운전 차량을 이용한 배차 서비스를 개발할 것이라 밝혔음


GM은 자율운전 기술을 자체 개발하고 있을 뿐만 아니라 자율운전 기술 벤처인 크루즈 오토메이션(Cruise Automation)을 인수해 기술력을 흡수했는데, 인수 금액은 공식 발표되지 않았지만 10억 달러인 것으로 알려지고 있음


크루즈 오토메이션은 차량의 외부에 부착할 수 있는 자율운전 키트를 판매하고 있었지만, 최근에는 자율운전 기술 전체 단계를 개발하고 있었음


GM이 크루즈 오토메이션을 인수한 이유는 자율운전 차량의 개발 속도를 앞당기기 위해서이며, 인수에 따라 크루즈 오토메이션의 엔지니어 40명을 GM의 자율운전 개발팀에 합류시켜 기술 개발을 본격적으로 시작하였음


GM의 행보는 자동차 제조업체가 본격적으로 배차 서비스에 나섰다는 점과, 자율운전 기술로 향후 무인 택시 사업을 전개한다는 장기 계획으로 인해 주목을 받고 있음


GM과 리프트는 쉐보레 볼트 전기차(Bolt EV) 모델 기반의 자율운전 자동차를 개발하고 있는데, 이렇게 개발된 차량을 리프트의 무인 택시로 출고할 예정


리프트는 2년 이내에 캘리포니아주에서 5대의 무인 택시를 통해 도로 시험 주행을 시작할 예정인데, 초기에는 전담 드라이버가 탑승해 무인 택시의 운행을 지원하게 되며 무인 택시가 자동으로 주행하다 문제가 발생하면 드라이버가 운전을 교대하게 됨


시범 주행 시 무인 택시에 타는 것을 주저하는 소비자도 많을 것으로 예상되므로, 이용자가 앱을 통해 배차되는 차가 무인 택시인지 여부를 알 수 있게 할 계획이며, 만약 무인 택시에 타고 싶지 않으면 배차를 거부할 수 있는 옵션을 둘 것이라고 함


◈ 핫 이슈인 중국 시장도 상황은 비슷한데, 중국 최대 서비스 업체인 디디추싱은 애플과 공동으로 무인 택시 사업을 전개할 가능성이 점쳐지고 있음


2012년 설립된 디디추싱은 현재 중국 내 400여 도시를 커버하고 있으며, 등록된 드라이버는 1,400만 명이고 하루 이용 횟수는 1,100만 건으로, 중국 시장을 사실상 독점하고 있음




<자료> E-Commerce Times


[그림 4] 디디추싱에 대한 애플의 투자


올해 5월에는 애플이 디디추싱에 10억 달러 출자를 발표해 배차 서비스 업계에 일대 파란을 일으켰는데, 투자 배경에 대해서는 다양한 억측이 난무하고 있지만 애플이 결국 자동차 산업에 진출하기로 결정한 것 아니냐는 분석이 주를 이루고 있음


애플은 중국에서 아이폰 매출이 크게 감소하면서 새로운 사업을 모색하고 있는데, 그 일환으로 자율운전 전기차의 개발을 시작한 것으로 알려지고 있음


애널리스트들은 애플이 자율주행 전기차를 개발하게 되면, 이를 통해 향후 디디추싱과 공동으로 무인 택시 사업을 전개할 가능성이 클 것으로 점치고 있음


◈ 무인 택시 사업에서는 자동차와 승객의 커뮤니케이션이 관건이 될 것으로 보이기 때문에, 업계는 자율운전 기술뿐만 아니라 승객 파악 기술과 대화 기​​술도 개발해 나갈 전망


무인 택시는 이용자가 차량에 탑승한 것을 인식할 수 있는 구조가 갖추어야 하고, 또한 차를 타러 온 사람이 앱을 통해 배차를 요구한 본인인지를 확인하는 기능도 필요함


또한 승객이 목적지를 어떻게 지정하는지, 차량이 지정된 목적지에 제대로 도착했는지 여부를 어떻게 파악하는지 등 해결 과제가 적지 않음


이런 기능을 실현하려면 앱만으로는 불충분하며, 차량 쪽에 센서 등의 장비나 대화 기​​술의 탑재가 필요한데, 배차 서비스 업체가 아니고 제조업인 GM이 무인 차량과 자율운전 기술 개발에 적극 나서고 있는 이유이기도 함


◈ 관련 기술의 완성도가 높아지고 관련 법규정의 정비가 이루어지면, 배차 서비스 기업들은 점차 무인 택시 서비스를 중심으로 비즈니스 모델을 재편해 나갈 전망


자율운전 차량은 어디서나 달릴 수 있는 것은 아니고 운행 할 수 있는 범위가 한정될 것으로 보이는데, 가령 2019년에 첫번째 모델을 선보일 구글의 경우, 우선 자동차 친화적인 환경에 차량을 투입하고 순차적으로 주행이 어려운 환경으로 확대해 나간다는 계획


도로 유형을 놓고 보면, 자율운전 차량에게 고속도로 및 간선 도로에서 주행은 비교적 용이한 반면 시가지 중심부의 주행이 가장 어려운데, 따라서 초기에는 자율운전 차량이 주행할 수 없는 곳은 드라이버가 보완하는 형태로 사업을 전개할 전망


또한 무인 자율주행 차량의 안전성이 검증되더라도, 정서적으로 무인 차량에 거부감이나 부담감을 갖고 있는 고객을 위해서 적정 수의 인간 드라이버 풀은 상시 확보하여 운영할 것으로 예상


이런 경우 드라이버가 운전하는 차량이 무인 택시에 비해 요금이 다소 높을 것이며, 배차 서비스 기업들은 자율운전 차량과 기존 차량을 혼합하여 최적의 비용효율성 밸런스로 사업을 전개하게 될 것임


◈ 우버와 디디추싱 등은 배차 서비스의 대규모 전개를 통해 자동차 이용 문화를 바꾸어 내고 있는데, 무인 택시까지 등장하면 자동차 이용 목적과 형태는 근본적으로 바뀔 전망





<자료> Uber


[동영상 1] 출퇴근용 합승 택시 서비스 우버풀’의 작동 방식


배차 서비스 활성화는 자동차를 구매하는 모델에서 차를 호출하는 모델로 변화를 수반하는데, 실리콘밸리에서 이런 흐름이 시작되면서 청년층 사이에서는 우버를 부르는 것이 멋진 라이프 스타일로 자리 잡았음


장년층 사이에서도 우버를 이용해 출퇴근을 하며 자가용을 소유하지 않는 라이프 스타일이 시작되고 있는데, 우버는 이런 수요에 발맞춰 통근용 합승 택시인 우버풀(uberPOOL) 서비스를 내놓았으며, 저렴한 요금으로 출퇴근 할 수 있기 때문에 자가용 없는 생활이 점차 현실화 되고 있음


여기서 더 나아가 자율주행차 기반 무인 택시가 활성화되어 자가용이 없는 생활이 사회의 주류 트렌드가 되면 자동차 산업이 격변하게 되는데, 소비자가 차를 이용할 때 우버, 리프트, 디디추싱 등 배차 서비스 기업이 인터페이스가 됨


, 배차 서비스 기업의 브랜드 이미지가 선택의 제일 기준이 되고, 자동차 메이커나 차종은 이차적인 요인이 되는 것임


이는 항공기 산업과 비슷한데, 비행기를 탈 때 항공사의 서비스와 가격을 기준으로 이용하는 업체를 선택하지, 비행기 기종을 기준으로 항공편을 선택하는 경우는 많지 않음


◈ 자동차 산업은 배차 서비스를 지나 자율주행차를 계기로 인터넷 혁명 전야를 맞이하고 있으며, 새로운 시대에 살아남기 위한 기업간 제휴와 경쟁이 치열하게 전개될 전망


배차 서비스는 IT 산업과 비교하자면 클라우드 서비스와 비슷한데, 이용자가 서버를 구입 대신 인터넷을 이용하는 것처럼 차를 사는 대신 인터넷을 통해 자동차를 호출함


IT 시장이 클라우드를 향해 가고 있듯이, 자동차 산업은 배차 서비스, 특히 무인 차량 기반 배차 서비스를 킬러 앱으로 보고 밸류 체인의 변화를 모색하고 있음


구매에서 호출 모델로 전환이 이루어지면, 자동차 제조업체는 배차 서비스 기업에 차량을 안정적으로 납품할 수 있어야 영업이익을 낼 수 있기 때문에 소비자에게 차량을 직접 판매하는 경우는 줄어들고 B2B가 산업의 중심이 됨


바로 이런 변화 때문에 제조업체들이 자동차의 생산에만 머무는 것이 아니라, 배차 서비스 사업으로 치고 나오는 것이며, 리프트와 공동으로 배차 서비스를 시작한 GM 이런 흐름을 상징한다고 볼 수 있음





<자료> NEXT Future T


[그림 6] 카림의 모듈형 무인 택시 넥스트



• 도요타가 우버와, 그리고 폴크스바겐이 이스라엘의 배차 서비스 기업 게트(Gett)와 공동으로 사업을 시작하는 등 올해 들어 제조업체와 배차 서비스 기업의 제휴가 잇따르고 있는데, 나머지 다른 완성차 업체들도 유사 행보를 보일 것으로 예상됨


또한 디디추싱에 투자한 애플의 예에서 보듯, IT 거대기업과 배차 서비스 기업 간의 합종연횡과 플랫폼 진영간 경쟁도 더욱 치열해질 전망


중동 지역의 배차 서비스인 카림(Careem)’넥스트 퓨처 트랜스포테이션(NEXT Future Transportation)’과 제휴를 맺고 2020년까지 버스 형태로 결합이 가능한 모듈형 무인 택시 운행 계획을 발표하는 등, 무인 택시는 지역적으로도 보편화될 조짐을 띠고 있음