※ 아래 글은 정보통신기술진흥센터(IITP)가 발간하는 주간기술동향 1827호(2017. 12. 20. 발행)에 기고한 원고입니다.


▶ IITP에서 PDF 포맷으로 퍼블리싱한 파일을 첨부합니다. 가독성이 좋으니 참고하시기 바랍니다.

완전 자율주행 무인 택시 ‘웨이모’의 안전성 확보를 위한 여러 노력들.pdf



[ 요 약 ]


웨이모(Waymo)가 테스트 중인 완전 무인 택시는 자율주행 기술 6단계 중 5단계 진입을 뜻하는데이는 차량 안전성에 대한 책임이 사람에서 자동차 제조업체로 옮겨진다는 점에서 큰 의의가 있음안전성 책임을 떠안겠다고 선언한 셈이므로 웨이모는 안전성 확보를 위해 소프트웨어 개발하드웨어 사전 정비서비스 UI 개발 등 여러 측면에서 노력하고 있는데특히 자율주행 차량의 최적 경로 결정을 인공지능이 아닌 사람에 맡김으로써 책임 소재 규명이 가능한 구조를 선택하고 있음



[ 본 문 ]

ž 알파벳 산하 웨이모(Waymo)의 무인 택시 시범 서비스는 자동차 사고의 책임이 사람에서 자동차 제조업체로 넘어오는 단계에 진입하고 있음을 보여 줌


Ø 웨이모는 지난 11월부터는 보조 운전자가 탑승하지 않는 무인 택시 운행서비스를 전개하고 있는데, 현재 수십 개 기업이 자율주행 차량 기술을 테스트하고 있지만 위급 상황에 관여할 운전자가 탑승하지 않는 완전 자율주행 차량의 도로 주행 테스트는 웨이모가 처음임


Ø 미국자동차기술학회(SAE)는 자율주행 기술의 발전 단계를 6단계로 구분(레벨0~레벨5)하고 있는데, 전문가들은 웨이모가 5단계인 레벨4에 해당하는 것으로 보고 있음


Ø 자율운전 기술 진화의 최종 단계인 레벨5는 운전자가 어떤 주행 상황에도 전혀 개입하지 않는다고 규정하고 있으므로 사고시 책임 소재가 명확히 자동차 제조업체에 있음


Ø 그러나 다섯 번째 단계인 레벨4는 운전자가 요건이 갖춰진 경우에 한해 운전에 전혀 개입하지 않는다고 규정하고 있어 사고 발생시 법적 책임 소재에 약간의 모호성이 발생할 수 있음


Ø 레벨4의 규정은 요건이 갖춰진 경우 주행과 관련된 모든 결정은 시스템이 하며 따라서 결과의 책임이 자동차에 있음을 의미하지만, 아직 자율주행차 관련 법규가 구체적으로 제정되지 않아 정해진 조건이 무엇이 되느냐에 따라 소비자와 제조업체간 분쟁이 발생할 소지가 있음


Ø 전문가들은 뭬이모가 무인 택시로 운행되는 데서 보듯, 레벨4부터 탑승자는 승객에 불과하기 때문에 원칙적으로 제조업체의 안전운행 책임을 명문화할 필요가 있다고 보고 있음


[1] 미국 자동차기술학회(SAE)의 자율주행 기술발전 단계 구분

Level 0

(비자동화)

- 운전자가 차의 속도와 방향을 계속 통제한다

- 시스템은 주행에 전혀 영향을 주지 않는다

Level 1

(운전자 보조)

- 운전자는 차의 속도 또는 방향을 계속 통제한다

- 시스템은 주행과 관련한 다른 기능에 개입한다

Level 2

(부분 자동화)

- 운전자는 반드시 능동적으로 주행에 개입하고 주변 상황을 항상 주시한다

- 시스템은 정해진 조건에서 차의 속도와 방향을 조절한다

Level 3

(조건부 자동화)

- 운전자는 능동적으로 주행에 개입하거나 주변 상황을 항상 주시하지 않아도 되지만, 항상 직접 주행을 통제할 준비가 되어 있어야 한다

-시스템은 정해진 조건에 차의 속도와 방향을 조절하고, 기능 구현이 한계에 이르기 전에 운전자가 능동적 운전을 이어나가도록 알림으로써, 운전자가 대응할 수 있는 시간적 여유를 주어야 한다

Level 4

(고도 자동화)

- 운전자는 정해진 조건에서 운전에 전혀 개입하지 않는다

- 시스템은 정해진 조건의 모든 상황에서 차의 속도와 방향을 통제하고 능동적으로 주행을 한다

Level 5

(완전 자동화)

- 운전자는 모든 상황에 개입하지 않는다

- 시스템은 주행 중 모든 경우에 차의 속도와 방향을 통제하고 능동적 주행을 한다

<자료> Society of Automotive Engineers


ž 자율운전 차량 사고의 책임이 제조업체 쪽으로 옮겨간다면 소비자 입장에서 가장 궁금한 것은 웨이모의 안정성인데, 안정성은 결정하는 것은 우선 소프트웨어의 완성도임


Ø 웨이모의 소프트웨어는 가상 및 실제 환경으로 나누어 테스트되는데, 개발된 자율운전 소프트웨어는 우선 시뮬레이터를 통해 알고리즘을 교육하고 학습한 기능을 검증하게 됨


<자료> Waymo


[그림 1] 시뮬레이터에서 자동차 구동 모습


Ø 웨이모는 고급 시뮬레이션 환경에서 알고리즘 교육을 실시하는데, 시뮬레이터를 통해 25,000 대의 웨이모를 구동시킴으로써 매일 800만 마일의 주행 테스트를 하는 효과를 얻고 있음


Ø 시뮬레이터를 사용하면 시험 주행 거리를 늘릴 수 있을 뿐만 아니라, 실제 현실에서는 별로 발생하지 않는 이벤트도 생성해 교육시킬 수 있는데, 예를 들어 교차로에서 좌회전 신호가 깜빡이는 등 자주 발생하지 않지만 사고 연관성은 높은 신호 상황을 만들어 낼 수 있음


Ø 시뮬레이터는 실제 거리를 소프트웨어로 재현하고 있는데, 가상으로 구현된 거리는 실제 시가지를 스캔한 데이터를 바탕으로 구축된 것으로, 전용 차량에 탑재된 라이다(Lidar, 레이저 센서)를 통해 거리를 스캔한 후 정밀 3D 지도를 제작한 것임


Ø 지도에는 차선, 인도, 신호등 등이 표시되는데 여기에는 차선의 폭과 인도의 높이 등 주행 정보 가 포함되어 있으며, 그 위에 좌회전 신호가 깜박이는 교차로 등 특수 이벤트 발생 상황을 구현할 수 있음


ž 시뮬레이터에서는 조건을 다양하게 바꾸거나 환경에 변화를 추가한 후 테스트를 실행하는 퍼징(Fuzzing) 과정을 통해 소프트웨어의 완성도를 높여 가게 됨


Ø 시뮬레이터에서 조건이 구성되고 나면 가상의 거리를 자동차로 주행하는데, 이를 통해 좌회전 신호가 깜박이는 교차로에서 회전하는 연습을 하게 됨


<자료> Waymo


[그림 2] 시뮬레이터에서 교차로 좌회전 상황 학습


Ø 이 경우 자동차는 교차로에 천천히 진입하며 마주 오는 차량이 없는 것을 확인한 후 좌회전하게 되는데, 알고리즘이 개선되어 갈 때마다 동일한 조건에서 주행 시험을 반복함으로써 습득한 운전 기술의 완성도를 높여 나감


Ø 시뮬레이터의 환경에는 변화를 추가할 수 있는데, 이를 퍼징(Fuzzing)이라 하며, 가령 좌회전 신호 시에 마주 오는 차량의 속도를 바꾸거나 신호등 타이밍을 바꿀 수 있고, 새로운 조건에서도 자동차가 안전하게 좌회전 할 수 있는지 확인해 볼 수 있음


Ø 또한 실제로는 거의 있을 수 없는 상황 조건을 구현할 수도 있는데, 오토바이가 백색 차선 위를 따라 달리거나 사람이 차선 사이를 지그재그로 달리는 상황 등을 생성한 후 비정상적인 행동이 발생할 때 자동차가 어떻게 반응하는지 확인해 볼 수 있음


Ø 이처럼 웨이모 자율운전 자동차는 주요 기술을 시뮬레이터에서 배우고 연습을 거듭해 완성도를 높이고 있으며, 2016년 한 해에만 시뮬레이터에서 25억 마일을 주행했다고 하는데, 이는 지구를 10만 바퀴 돈 거리에 해당함


ž 시뮬레이션을 통과한 소프트웨어는 자동차에 탑재되어 도로 주행 테스트를 하게 되는데, 전용 서킷에서 테스트를 거친 후 실제 도로에서 시험 주행을 하게 됨


Ø 소프트웨어를 탑재한 시험 차량은 전용 서킷인 캐슬(Castle)에서 주행 테스트를 하는데, 캐슬은 구글이 공군 기지 철거 부지를 사들인 후 실제 거리 풍경을 그대로 재현한 곳임


<자료> Google Earth


[그림 3] 자율주행차 테스트용 전용 서킷 캐슬


Ø 캐슬에서 새로 개발된 소프트웨어와 수정된 소프트웨어가 검증되며 또한 드물게 발생하는 이벤트들도 시험하는데, 구조화된 테스트(Structured Tests)라 불리는 이 과정에서 약 2만 가지의 시나리오를 검증하며, 검증이 끝난 소프트웨어는 도로에서 실제 테스트를 진행함


Ø 웨이모는 지난 8년 동안 미국 전역의 20개 도시에서 350만 마일의 도로를 실제 주행했는데, 애리조나에서는 사막 환경, 워싱턴에서는 비 내리는 환경, 미시간에서는 눈 내리는 환경에서 테스트 하는 등 서로 다른 기상 조건에서 안전하게 주행 할 수 있는지 확인하고 있음


Ø 도로 주행 테스트는 또한 홍보 활동을 겸하고 있는데, 지역 주민들이 자율운전 차량을 실제 접하게 함으로써 막연한 불안감을 없애고 이해하게 만드는 것을 목표로 하고 있음


Ø 시뮬레이션 통과 후 실제 차량에 탑재 되어 전용 서킷과 실제 시가지 주행을 통해 기능과 안정성이 검증되면, 비로소 자율운전 소프트웨어는 최종 제품으로 출하가 됨


ž 이처럼 웨이모가 여러 단계에 걸쳐 다양한 소프트웨어 테스트 및 실제 주행 테스트를 거쳐야 하는 것은 자율주행차의 최적 경로를 인공지능(AI)이 아닌 사람이 결정하기 때문임



[그림 4] 웨이모의 최적 경로 결정 과정


Ø 웨이모의 소프트웨어는 주변 객체의 움직임을 예상하고 그 바탕 위에 최적의 경로를 산출하는데 이를 플래닝(Planning) 프로세스라 부르며, 플래닝을 통해 진행 방향, 속도, 주행할 차선, 핸들 조작 등을 결정하게 됨


Ø 여기서 핵심 포인트는 플래닝 프로세스에 AI를 적용하지 않는다는 것인데, 플래닝의 로직은 코딩되어 있으며 자동차의 움직임은 사람이 프로그램으로 지정하고 있음


Ø 즉 웨이모는 인간이 자율운전의 알고리즘을 파악할 수 있는 구조로 되어 있는 것인데, 이는 사고가 났을 경우 알고리즘 파악을 통해 책임 소재를 규명할 수 있는 장점이 있으나, 방대한 규칙이 정의되어야 하며 그 개념들을 검증하기 위한 대규모의 주행 테스트가 필요하게 됨


Ø 웨이모의 이런 접근 방식은 플래닝 프로세스를 AI가 담당하게 하는 엔비디아와 대비되는 것인데, 엔비디아는 AI가 인간의 운전을 보고 운전 기술을 배우는 AI Car 개발을 목표로 하고 있음


Ø AI Car는 추상적인 도로 개념을 이해해 차선이 없어도 인간처럼 운전하는 것을 목표로 하는데, 방대한 규칙의 정의가 필요하지 않고 알고리즘은 웨이모에 비해 간단해 질 수 있지만, AI의 의사결정 메커니즘은 인간이 전혀 이해할 수 없어 신뢰성의 문제가 발생하게 됨


Ø 알파고의 경우 인간이 알파고의 메커니즘을 전혀 이해할 수 없더라도 결과적으로 사람을 이기기 때문에 그 수를 보고 연구하려는 마음이 생길 수 있지만, AI Car의 경우 사고가 났을 때 AI의 판단이 사람보다 나을 테니 무조건 사람이 운전한 쪽이 잘못이라 판정할 수는 없기 때문


ž 한편 자율주행차는 무인으로 주행하기 때문에 소프트웨어 성능뿐 아니라 차량의 유지보수도 매우 중요하므로, 웨이모는 자동차 정비 전문 네트워크와 제휴를 맺고 있음


<자료> Waymo


[그림 5] 차고에서 정비 중인 웨이모 무인 택시


Ø 웨이모는 지난 11월 무인 택시 서비스 시작에 즈음해 차량 유지보수 네트워크인 오토네이션(AutoNation)과 제휴를 발표하였으며, 애리조나와 캘리포니아에서는 이미 오토네이션을 통해 웨이모의 유지 보수 서비스를 실시하고 있음


Ø 오토네이션은 미국 최대 자동차 판매기업으로 16개 주에 361개 매장을 보유하고 있으며 35개 제조업체의 자동차를 판매하고 있는데, 판매뿐 아니라 자동차 정비 사업도 전개하고 있음


Ø 웨이모는 무인 자율운전 차량이기 때문에 문제가 발생할 경우 비상등을 켜고 수리할 수 없으므로, 오류가 발생하기 전에 부품 교환을 실시하는 등 예방 정비활동 중심으로 차량 유지보수를 해야 함


Ø 비단 하드웨어에 대한 정비뿐 아니라 자율운전 차량은 고급 센서와 소프트웨어를 탑재하고 있기 때문에 이에 상응하는 소프트웨어 관리 기술도 요구됨


Ø 자율운전 차량의 기기는 고가이기 때문에 제조원가를 조기에 상각하려면 24시간 연속으로 운행하게 될 가능성이 높은데, 이런 사업모델을 지원하기 위해서라도 자율운전 자동차의 유지 보수 기술은 매우 중요함


ž 현재 자율운전 자동차의 안전에 관한 지표는 확립되어 있지 않기 때문에, 웨이모는 안전성 확보를 위해 여러 가지 관점에서 다양하게 접근하고 있음


Ø 자율운전 차량의 도로주행 테스트를 어느 조건에서 얼마만큼 해야 하는 지에 대해서는 논란이 계속되고 있으며, 아직 업계 공동의 혹은 공공기관이 정한 안정성 기준은 마련되어 있지 않음


Ø 그러나 캘리포니아 주의 경우 자율운전 차량의 도로 테스트 내용을 공표하도록 의무화 하고 있기 때문에, 그 중 자율운전 기능 해제(Disengagement) 섹션을 통해 간접적으로나마 안전성을 추정해 볼 수는 있음


<자료> Department of Motor Vehicles


[그림 6] 웨이모의 자율운전 기능 해제 횟수


Ø 자율운전 기능 해제 조치(Disengagement)가 실행되었다는 것은 자동차가 위험한 상태에 놓이게 되었다는 뜻이므로, 이를 사고 상황 혹은 자율주행차가 설계대로 작동하지 않은 결함 발생 상황으로 해석해 볼 수 있기 때문


Ø 웨이모의 자율운전 기능 해제 횟수는 2015년에 1천 마일 당 0.8회였으나 2016년에는 0.2회로 감소했으며, 2017년도 보고서는 아직 공개되지 않았지만 이런 추세가 이어졌다면 거의 발생하지 않았을 것으로 보임


Ø 웨이모는 안전과 관련하여 여러 관점에서 장치를 마련하고 있는데, 철저한 주행 시험을 반복하여 자율운전 모드에서 350만 마일을 주행시켰으며, 차량의 주요 시스템인 스티어링이나 브레이크 등을 이중화 하여 하드웨어의 고장에 대비하고 있음


Ø 운용 측면에서는 주행할 수 있는 영역을 운행 설계 영역(ODD, Operational Design Domain)로 정의해 자동차가 달릴 조건을 명확하게 파악하고 있으며, 탑승객과 인터페이스에도 신경을 써 무인 택시 승객이 사고 발생시에도 불안해 하지 않도록 기능 설계를 하였음


Ø 개발 과정과 시험 결과만 놓고 보면, 그리고 안전하게 주행 할 수 있는 환경에서만 서비스를 제공하며, 무인으로 주행하더라도 운행 제어센터에서 원격으로 모니터하고 비상 사태에 대응하고 있다는 점을 고려하면 웨이모 무인 택시는 안전하다고 평가할 수 있음


ž 안정성 확보를 위한 웨이모의 다양한 시도들은 기술을 현실에 맞추려는 기술업체들의 노력을 통해 자율주행차가 상용 서비스 단계에 본격 진입하고 있음을 보여주고 있음


Ø 그 동안 자율주행차의 상용화 시기 전망이 어려웠던 이유는 안전성에 대한 확신을 과연 어떻게 할 수 있을지에 대한 사회적 합의가 이루어지지 않았기 때문임


Ø 안전성 이슈는 단순히 사고 빈도를 얼마나 낮출 수 있느냐에 대한 것이 아니라, 긴급 상황 발생 시 대처 방안과 사고 발생 시 책임 소재 규명 및 그에 따른 보험 처리 방안까지 포함하는 사회관습적인 문제이자 법적인 문제임


Ø 웨이모는 혁신적인 자율운전 기술에 맞춘 새로운 자동차 법규나 사회적 합의를 마련해 달라고 요구하는 데 머무르지 않고, 안전성에 관한 현재의 사회적 기준에 최대한 부합하기 위한 기술 개발 방식 및 서비스 운용 방식을 채택하여 그 완성도를 높여 나가고 있음


Ø 특히 최적 경로 선택을 AI에 맡기지 않고 사람이 결정하는 방식을 택함으로써 오히려 더 지난한 테스트 기간을 자처하고, 완전 무인 자율주행 방식을 선택해 안정성과 직결된 책임의 문제를 업체가 부담하겠다고 나선 점은 결과를 떠나 높이 평가 받을 만한 지점임


Ø 자동차 해킹 등 보안 이슈도 남아 있고 안전성에 대한 문제 제기는 끝이 없을 테지만, 웨이모가 보여준 전향적인 시도들로 인해 자율주행차 상용화 시점은 한층 더 앞당겨질 전망