※ 아래 글은 정보통신기술진흥센터(IITP)가 발간하는 주간기술동향 1833호(2018. 2. 14. 발행)에 기고한 원고입니다.


▶ IITP에서 PDF 포맷으로 퍼블리싱한 파일을 첨부합니다. 가독성이 좋으니 참고하시기 바랍니다.

AI로 AI를 개발하는 기술의 진전, 성당에서 시장으로 나오는 AI.pdf



[ 요 약 ]


현재의 범용 신경망이 제공하는 기능이 불충분하다고 느낄 경우 특정 용도의 고도 신경망을 개발할 필요성이 대두되나신경망을 새롭게 최적화하는 작업을 수행할 수 있는 AI 연구자는 극소수이고 개발 기간도 오래 걸리는 문제가 있음최근 구글은 사람이 아닌 AI가 신경망 고도화 작업을 수행하도록 하는 기술을 클라우드 서비스 형태로 공개하였는데누구나 쉽게 특정 용도의 AI를 개발할 수 있게 됨에 따라 더욱 혁신적인 AI가 출현할 가능성이 높아지고 있음


[ 본 문 ] 


ž 미국의 오크 릿지 국립 연구소(Oak Ridge National Laboratory)는 기존 범용 신경망을 이용한 연구에 한계가 있음을 느끼고 과학 연구 전용의 고도 신경망 개발에 나서게 있음

Ø 오크 릿지 연구소는 미국 에너지부 산하 기관으로 과학의 수수께끼 규명을 목표로 하고 있는데, 세계 최고 수준의 수퍼 컴퓨터인 타이탄(Titan)을 운용하는 곳으로도 유명함



<자료> Wikimedia Commons

[그림 1] 수퍼 컴퓨터 타이탄


Ø 타이탄은 크레이(Cray) 사가 개발했으며, 18,688개 노드로 구성된 병렬 머신으로 각 노드에 CPU(AMD 옵테론) GPU(엔비디아 케플러)를 탑재한 세계 최대 규모의 수퍼 컴퓨터임


Ø 이 연구소는 몇 년 전부터 최근 급속히 발전한 이미지 인식과 음성 인식 신경망을 이용한 연구를 진행해 왔으나, 상용화된 범용 신경망을 기초과학 연구에 적용한 결과 기대한 만큼의 성과는 얻을 수 없었다고 함


Ø 그 이유는 과학 연구에서 다루는 데이터의 특수성과 신경망 교육에 사용할 수 있는 데이터의 수가 제한되어 있기 때문이었으며, 따라서 오크 리지 연구소는 과학 연구를 위한 전용 신경망 개발의 필요성에 직면하게 되었음


Ø 이에 따라 오크 릿지 연구소는 타이탄을 이용해 과학 연구에 적합한 고정밀 신경망을 개발하게 되었으며, 현재 이를 활용해 물질과학 및 입자 물리학의 연구를 진행하고 있음


ž 오크 릿지 연구소가 과학 전용의 신경망 개발에 있어 수퍼 컴퓨터를 이용한 부분은 신경망 최적화 단계로, 이전까지 인간이 담당하던 작업을 AI를 이용해 실행한 것이 특징


Ø 연구진은 특정 데이터 세트에 대해 최적의 신경망이 존재한다는 전제에서 그 구조를 탐구 해 왔는데, 이 연구는 소위 하이퍼 파라미터 최적화(Hyper-Parameter Optimization, HPO)의 문제로 귀결됨


Ø 하이퍼 파라미터는 신경망의 기본 모델, 즉 신경망 각층의 종류와 그 순서, 네트워크의 층수 등을 의미하며, HPO는 이들 기본 요소를 조합하여 네트워크를 최적화하는 작업임


Ø 달리 표현하면, 대부분의 기계학습 알고리즘에서는 연구자들이 지정해 두어야 할 설정들이 많은데 이런 다양한 튜닝 옵션들을 하이퍼 파라미터라 부르며, 성능을 최적화하거나 편향과 분산 사이의 균형을 맞출 때 알고리즘을 조절하기 위해 HPO를 수행함


Ø 성능 최적화를 위해 하이퍼 파라미터를 튜닝 하는 것은 연구자들 사이에서는 예술이라 불릴 만큼 어렵고 정교한 작업이며, 어떤 데이터 세트에서 최고의 성능을 보장하는 쉽고 빠른 튜닝 작업 방법은 없는 것으로 알려져 있음


<자료> IBM

[그림 2] 하이퍼 파라미터 최적화


Ø 하이퍼 파라미터 최적화는 기존 딥러닝 소프트웨어(Caffe, Torch, Theano )를 사용하여 수작업으로 실시되며, 표준 소프트웨어를 개조하여 신경망 각 층의 종류와 순서, 네트워크 층수 등 신경망의 토폴로지(망 구성)를 결정하게 됨



Ø 그 다음으로는 생성된 신경망을 교육하고 그 성능을 검증하는데, 이 과정을 여러 번 반복하여 최적의 신경망의 형태를 얻게 되며, 이 과정은 연구자가 경험과 감에 전적으로 의존하여 진행되기 때문에 통상 새로운 신경망을 생성하는 데 몇 달씩 소요되기도 함


Ø 그런데 오크 릿지 연구소는 이 튜닝 작업을 AI로 설계하고 이를 수퍼 컴퓨터로 실행함으로써 큰 ​​성과를 올렸는데, 즉 특정 연구에 최적화 된 신경망을 연구자의 수작업이 아니라 AI로 생성시킨 것


Ø 이 방식을 통해 오크 릿지 연구소는 과학연구 전용 신경망을 단 몇 시간 만에 생성하는 데 성공했으며, 이렇게 AI가 만든 신경망이 현재 중성미립자(Neutrino) 연구에 크게 기여하고 있다고 함


ž 오크 릿지 연구소가 신경망 생성에 이용한 AI MENNDL(Multinode Evolutionary Neural Networks for Deep Learning)이라 부르는데, 생물이 진화하는 방식을 모방한 것이라고 함


Ø 사람이 HPO를 하는 것과 마찬가지로, MENNDL 우선 특정 데이터 세트, 가령 중성미립자 실험 데이터의 처리에 특화된 신경망을 생성한 다음 신경망을 교육시키고 그 성능을 평가하며, 그 평가 결과에 따라 신경망 구조를 변화시킴으로써 성능 향상을 도모함


Ø 이 과정을 반복하여 고급 신경망을 생성하게 되는데, 이 기법은 생물의 DNA가 배합과 변이를 반복하며 진화하는 방식을 모방하고 있기 때문에 진화적 알고리즘(Evolutionary Algorithm)이라 불림


<자료> Oak Ridge National Laboratory


[그림 3] MENNDL의 진화적 알고리즘


Ø MENNDL은 생성된 신경망의 교육과 성능 평가를 타이탄 수퍼 컴퓨터의 노드를 이용해 수행하는데, 마스터(master) 노드에서 진화의 프로세스를 실행해 신경망을 생성하면, 워커(worker) 노드는 생성된 네트워크를 교육하고 그 성능을 평가하게 됨


Ø 딥러닝 알고리즘을 포함하고 있는 수정 가능한 소프트웨어 프레임워크로는 카페(caffe) 를 사용하여 워커 노드에서 대규모 병렬 실행을 하며, 마스터 노드와 워커 노드 사이의 통신은 Message Passing Interface라는 프로토콜을 사용하고 있음


ž MENNDL을 활용하고 있는 것은 오크 릿지 연구소뿐 만이 아니며, 현재 여러 연구기관에서 의료 연구나 우주 탄생 연구 등에 적합한 신경망 생성에 활용하고 있음


Ø 소아암 연구로 유명한 세인트 주드 소아 병원(St. Jude Children 's Research Hospital)MENNDL을 이용해 생성한 신경망을 의료 연구에 사용하고 있는데, 3D 전자 현미경으로 촬영한 이미지에서 미토콘드리아를 식별하는 신경망을 생성하였음


Ø 미토콘드리아는 발견할 수 있기는 하지만 존재하는 위치가 다양하며 모양과 크기가 달라 사람이 식별하기는 어렵기 때문에, 세인트 주드 병원은 MENNDL을 이용해 미토콘드리아를 식별하기 위한 의료 전용 신경망을 생성한 것임


Ø 페르미 국립 가속기 연구소(Fermi National Accelerator Laboratory) 역시 MENNDL을 이용해 중성미립자 검출을 위한 전용 신경망을 생성하였음


<자료> Fermi National Accelerator Laboratory


[그림 4] 페르미 연구소의 뉴트리노 관측기기


Ø 중성미립자는 입자 중에서 페르미온(Fermion)으로 분류되면 질량은 매우 작고 다른 입자와 상호 작용이 거의 없으며 투과성이 높아서 감지해 내기가 매우 어려움


Ø 중성미립자 연구는 초기 우주의 규명과 물질 구조의 규명으로 이어질 것으로 기대되어 각국에서 경쟁적으로 연구가 진행되고 있는 분야임


Ø 페르미 연구소는 관측 장치를 개발해 중성미립자를 대량으로 생성한 후 그 상호작용을 연구하고 있는데, 중성미립자 검출에 특화된 구조를 가진 신경망을 이용하고 있음


Ø 신경망은 관측 사진을 분석해 중성미립자가 장치 내 어디에서 상호작용을 일으킨 것인지를 정확히 파악하는데, 사진에는 다른 입자들이 일으킨 상호작용도 무수히 기록되기 때문에 일반적인 신경망을 통해 중성미립자를 골라 내는 것은 매우 어려운 일이었음


Ø 그러나 MENNDL을 통해 전용 신경망을 만들 수 있게 됨에 따라, 아주 드물게 발생하는 중성미립자의 상호 작용을 정밀하게 식별할 수 있게 된 것임


Ø 페르미 연구소에서는 MENNDL 50만 종류의 신경망을 생성하고 이를 교육한 후 성능을 평가했는데, 교육 데이터로 중성미립자의 상호작용을 기록한 이미지 80만 장을 사용했으며, 평가를 통해 가장 판정이 정확한 신경망을 선정해 연구에 활용하고 있음


Ø 이러한 일련의 과정은 오크 릿지 연구소의 경우와 마찬가지로 타이탄의 18,688개 노드에서 병렬로 실행되었는데, 과학 전용 신경망의 개발과 이를 이용한 과학 연구는 AI 수퍼 컴퓨터의 도입으로 비로소 가능해졌다고도 볼 수 있음


ž 한편 특정 용도의 신경망을 AI로 생성하는 것이 수퍼 컴퓨터 이용이 가능한 대형 연구소에서만 가능한 것은 아니며 일반 기업도 가능해졌는데 여기에는 구글이 기여한 바가 큼


Ø 구글은 이미 AI를 이용해 고급 기계학습 알고리즘을 생성하는 오토(Auto)ML 기술을 사내 에서 자체적으로 이용하고 있었는데, 최근 이 기술을 클라우드 오토ML이라는 클라우드 서비스 형태로 공개하였음


Ø 오크 릿지 연구소의 전용 AI 개발은 세계 최고급의 수퍼 컴퓨터가 있기에 가능한 측면이 있었고, 그러한 고도의 컴퓨팅 자원을 보통의 기업이 갖추기는 현실적으로 어려운 것인데, 구글이 클라우드 오토ML을 공개함에 따라 전용 AI 개발에 대한 접근성이 높아진 것임


Ø 구글이 오토ML을 개발하고 또 공개한 이유는 오크 릿지 연구소의 경우와 동일한데, 일반 AI가 다양한 기능이 있기는 하지만 고급 판정 능력이 필요한 특정 업무에는 사용할 수 없어 전용 AI를 개발해야 하며, 이 작업을 할 수 있는 AI 연구자는 극소수이기 때문


Ø 아마존이나 마이크로소프트와 마찬가지로도 이미 구글은 클라우드 ML 엔진이라는 서비스를 통해 일반 AI를 클라우드로 제공하고 있었으며, 이 서비스를 이용하는 기업들은 구글이 제공하는 클라우드 비전 API를 통해 이미지 인식 처리를 실행할 수 있음


Ø 클라우드 비전 API를 이용하며 쉽게 사진을 분류할 수 있는데, 가령 하늘의 구름 사진을 입력하면 시스템은 skycloud라고 정확히 분석 결과를 보여주며, 인물 사진을 입력하면 사람의 얼굴 형태임을 인지하고 그 표정을 분류하는 기능도 제공하고 있음


Ø 그러나 기상 전문가들에게는 이러한 클라우드 비전 API를 이용한 이미지 판정 기능이 충분하지 않은데, skycloud 정도만을 판정하는 기능으로는 권운(cirrus), 권적운(Cumulus humilis) 등과 같이 구름의 종류를 판정할 수 없기 때문


<자료> Gigazine


[그림 5] 기상 전용 AI의 구름 유형 식별


Ø 따라서 구름의 종류를 판별 할 수 있는 기계학습 알고리즘을 개발하는 것이 요구되지만, 이 작업을 할 수 있는 연구자의 수는 많지 않으며 개발 작업에도 많은 기간이 소요되는 문제점이 있었으며, 이러한 수요에 부응해 구글이 내놓은 것이 클라우드 오토ML


Ø 클라우드 오토ML을 이용하면 AI가 연구자 대신 전용 AI를 짧은 시간 안에 개발해 주기 때문에, 기상 전문가들은 구름의 종류를 판정 할 수 있는 기계학습 알고리즘을 클라우드 오토ML을 이용해 자동으로 생성할 수 있음


ž 구글에 따르면 클라우드 오토ML로 생성한 알고리즘의 인식률은 일반적인 신경망보다 정확도가 높아 활용가치가 더 높으며, 이미 다양한 분야에서 성공 사례가 나오고 있음


Ø 오토ML을 이용하면 우선 신경망 개발 기간을 크게 단축 할 수 있는 것이 장점으로, 파일럿 모델이라면 몇 분 안에 가능하고 프로덕션 모델이라도 하루 정도면 개발이 가능한데, 이렇게 금세 만든 신경망이라도 인식률은 기존 일반 AI보다 높다고 함


Ø 구글은 클라우드 오토ML을 비즈니스에 응용한 사례도 공개하고 있는데, 패션 브랜드인 어번 아웃피터(Urban Outfitters)는 상품에 태그를 붙이는 과정을 클라우드 오토ML 서비스를 이용해 자동화하고 있음



Ø 어번 아웃피터는 상품에 부여된 태그를 키 값으로 사용해 소비자들에게 제품을 추천하고 있으며, 상품 검색과 제품 필터링에서도 태그가 사용하는데, 이 태깅 작업에 클라우드 오토ML 을 이용해 상품 이미지를 분석하고 제품의 특징량을 추출하고 있음


Ø 가령 옷을 분류할 때 클라우드 오토ML로 만든 알고리즘은 가슴 부위의 형태에 따라 상품을 V-, 스쿱(Scoop) , 크루(Crew) 등으로 판정하는데, 이는 알고리즘이 디자인 패턴과 목선 등을 키 값으로 태그를 생성할 수 있기 때문


<자료> Google Cloud Platform

[그림 6] 어번 아웃피터의 패션 전용 AI


Ø 동물의 생태를 보호하는 활동을 전개하고 있는 국제 환경보호단체 Zoological Society of London(ZSL) 역시 클라우드 오토ML을 적극 활용하고 있음


Ø 이 단체는 동물의 생태를 이해하기 위해 서식지에 카메라를 설치하고 동물의 행동을 관찰하고 있는데, 범용 알고리즘이 사진을 보고 동물의 종류를 정확히 판정할 수 없기 때문에 사람이 이 과정에 관여하다 보니 태기 작업에 통상 9개월이 소요되었음


Ø 9개월이 지나고 나면 이미 야생동물의 이동이 크게 이루어지고 난 다음이기 때문에 보호 전략을 세워봐야 무용지물인 경우가 많았고, 밀렵꾼에 대한 대응도 뒷북이기 일쑤였는데, ZSL은 이 과정을 클라우드 오토ML을 이용해 자동화함으로써 문제를 해결하였음


Ø 9개월이 걸리던 태깅 작업을 순식간에, 또한 정확하게 처리할 수 있게 됨에 따라 ZSL은은 효과적인 동물보호 활동을 되었으며, 운영 비용 또한 크게 낮출 수 있게 되었는데, 단체 내에 AI 전문가 없이도 클라우드 오토ML 이용을 통해 이 모든 것이 가능하게 된 것임



ž AI를 만드는 AI의 이용 접근성이 높아짐에 따라 올해는 특정 업무 전용의 고급 AI 개발이 급증할 것으로 예상되며, AI의 개발의 대중화로 획기적인 AI가 출현할 가능성이 높음


Ø 에릭 레이먼드는 1997성당과 시장이란 글을 통해 중세시대 소수 성직자들이 지식을 독점한 것처럼 소수의 프로그래머들 소스코드를 독점해 프로그램을 개발하는 데서 벗어나 시장처럼 여러 사람이 모여 오픈소스로 공동 개발하는 것이 더 우월함을 주장한 바 있음


<자료> Network World

[그림 7] AI의 민주화


Ø 구글은 클라우드 오토ML 서비스를 공개하며 AI의 민주화를 기치로 내걸었는데, 여기에는 누구나 고도의 AI를 용이하게 개발할 수 있는 환경을 제공함으로써 소수가 개발할 때보다 훨씬 획기적인 AI가 개발되는 환경을 조성하겠다는 의미가 내포되어 있음


Ø 물론 구글의 클라우드 오토ML 서비스는 이제 막 시작된 것이고, 현재는 이미지 인식(Convolutional Neural Network) 관련 AI만 개발할 수 있는 한계가 있어 클라우드 오토ML을 통해 만든 신경망이 필요한 수준의 기능을 제공해주지 못할 수 있음


Ø 그러나 향후에는 음성 인식(Recurrent Neural Network) 관련 AI를 개발할 수 있는 기능도 제공될 것으로 예상되며, AI를 개발하는 AI의 기술이 발전할수록 클라우드 오토ML로 생성하는 신경망은 보다 고도화되며 동시에 보다 만들기 쉬워질 것임


Ø 그 시점이 도래한다면 AI의 민주화라는 구글의 비전이 현실화될 수 있을 것이며, 현재의 모바일 앱 개발처럼 수 많은 사람이 AI의 개발과 교육에 직접 참여하고 협업하는 과정에서 AI는 질적 도약을 이뤄낼 수 있을 것임


Ø 누구나 자신에게 필요한 AI를 누구나 개발할 수 있는 환경이 도래함에 따라 올해는 업무에 특화된 AI 알고리즘 개발이 확산될 것으로 예상되며, 더 나은 AI가 개발되고 확산되는 과정을 통해 인공지능은 우리 삶에 보다 급격히 접목되어 나갈 수 있을 것임

※ 아래 글은 정보통신기술진흥센터(IITP)가 발간하는 주간기술동향 1799호(2017. 6. 7 발행)에 기고한 원고입니다.


▶ IITP에서 PDF 포맷으로 퍼블리싱한 파일을 첨부합니다. 가독성이 좋으니 참고하시기 바랍니다.

AI가 AI를 개발한다, 구글의 전사 인공지능 프로젝트 Google ai.pdf



[ 요 약 ]


작년 11인공지능 퍼스트(AI First) 기업을 선언했던 구글의 선다 피차이 CEO는 올해 구글 I/O 컨퍼런스에서 그간의 성과를 설명하며 인공지능을 구글의 모든 제품과 서비스의 기반으로 삼는다는 전략 하에 Googl.ai 프로젝트를 진행 중이라고 설명. Google.ai의 연구 테마에는 사람이 아닌 인공지능이 인공지능의 알고리즘을 설계하는 AutoML이 포함되어 있으며, 이 연구 성과를 바탕으로 구글의 제품을 개선하고 인공지능 연산 처리를 위한 새로운 데이터센터를 구축한다는 계획


[ 본 문 ]

ž구글은 최근 개최된 연례 개발자 컨퍼런스 ‘Google I/O 2017’에서, 전사 차원의 인공지능(AI) 전략으로 ‘Google.ai’ 프로젝트를 진행 중이라고 공개


Ø 작년 11월 제품 발표회에서 인공지능 최우선(AI First) 기업을 선언한 바 있는 선다 피차이 CEO는 올해 I/O 컨퍼런스 기조연설에서 전사 차원의 AI 전략을 실행 중에 있다고 밝히며 프로젝트의 세부사항에 대해 발표하였음  구글은 최근 개최된 연례 개발자 컨퍼런스 Google I/O 2017에서, 전사 차원의 인공지능(AI) 전략으로 Google.ai 프로젝트를 진행 중이라고 공개

<자료> Engadget


[그림 1] Goolge.ai를 발표하는 선다 피차이 CEO


Ø 현재 진행 중인 전사 프로젝트의 명칭은 Google.ai로 고도의 AI를 개발하고 이를 구글의 모든 제품과 서비스의 기반 기술로 삼는다는 전략을 구현한 것임


Ø 진행 중인 Google.ai 프로젝트는 「기초연구」, 「도구」, 「응용기술」의 세 분야로 구성되어 있는데, 기초 연구는 고도의 AI 기술의 개발을, 도구는 AI를 실행하는 프로세서 등에 기반한 AI 데이터 센터의 제공을, 응용기술은 AI를 통한 구글 서비스의 개선을 목표로 하고 있음


ž 「기초연구」 분야에서 구글이 주목하고 있는 연구 테마는 AutoML인데, 이는 AI AI를 생성하는 기술의 개발을 통해 알고리즘 개발 임무를 인간에서 AI로 이관하려는 것임


Ø AutoML은 기계학습(Machine Learning)을 자동 생성하는 연구, 다시 말해 알고리즘이 다른 알고리즘을 생성하는 기법을 개발하는 것으로 [그림 2]AI AI를 생성하는 것을 보여주는데, 왼쪽이 인간이 만든 AI 알고리즘이며 오른쪽은 그 AI가 만들어 낸 딥러닝 알고리즘임


Ø [그림 2]의 사례는 처리 결과를 다음 단계로 루프시키는 반복(Recurrent) 구조의 네트워크로 시간에 의존하는 언어처리 등에 따라 언어 처리 등에 사용될 수 있는데, 이 알고리즘에 한 단어를 입력하면 다음 단어를 예측해 줌


<자료> Google Research Blog


[그림 2] 사람과 인공지능이 설계한 기계학습 알고리즘 아키텍처 비교


Ø AI가 생성한 알고리즘 아키텍처를 보면 사람이 설계한 것과 동일한 특징을 공유하기도 하지만, 증식적인 조합을 구현하기 위해 새로운 엘리먼트를 구사하는 것처럼 주목할 만한 차이를 보이는데 이런 방식은 사람이라면 반복 구조의 네트워크에서 대개는 사용하지 않는 것임


Ø 보통 알고리즘의 개발 연구자의 경험과 감이 크게 작용하며, 기존에 확립된 기술을 기반으로 개선점을 찾아 새로운 모델을 생성하게 됨


Ø 반면 AI는 수 많은 알고리즘을 생성하고 이들의 실제 학습 수행 정도를 파악하는 방법, 즉 피드백을 바탕으로 정확한 알고리즘을 만드는 방법을 학습함


Ø 인간은 소위 정석이라 불리는 것들을 축적하지만, AI는 때로 사람이 생각하기에 상식을 뒤집는 방식을 생성하는데, 선다 피차이 CEO의 설명에 따르면 인간이 생성한 알고리즘보다 AI 생성한 알고리즘의 정밀도가 더 높다고 함


Ø AutoML는 구글의 딥러닝 AI 리서치 센터인 구글 브레인(Google Brain)에서 연구 중이며 AI가 최적의 네트워크 구성을 자동으로 설계하는 것을 목표로 하는데, 이는 딥러닝 알고리즘 설계의 임무를 연구원에서 AI로 이관시킴을 의미함


Ø 이는 어찌 보면 AI 연구자 자신도 AI의 진화로 인해 일자리를 잃게 됨을 의미하나, 현재는 AI 연구자의 수가 절대적으로 부족하기 때문에 AutoML은 인력 부족을 해소하는 수단이 되며, 구글은 AI로 대체 가능한 연구인력을 AI 클라우드 개발로 돌려 관련 사업을 강화한다는 계획임


ž 「도구」 분야와 관련해서는 대규모 연산을 위한 확장성에 초점을 맞춘 인공지능용 프로세서로 Cloud TPU를 발표하였음


Ø TPU(Tensor Processing Unit)는 기계학습 연산 전용 프로세서인데, 텐서(Tensor) Trillion Sensor의 합성어로 향후 전세계가 수조 개의 센서들을 연결될 것이란 뜻을 담고 있음


Ø Cloud TPU 2세대 TPU로서 대규모 연산을 위한 확장성을 중시한 설계로 되어 있으며, 성능은 180Tflops(테라플롭스)64GB의 고속 메모리를 탑재한다고 함


Ø 플롭스(FLOPS, FLoating point OPerations per Second)는 컴퓨터의 성능을 수치로 나타내는 단위로 1초 동안 수행할 수 있는 부동소수점 연산의 횟수를 의미하며, 테라플롭스는 1초에 1조 번(1012) 연산 처리가 가능하다는 뜻


Ø 64개의 Cloud TPU가 보드에 탑재되면 TPU 파드(Pods)를 구성하게 되는데, 파드의 최대 성능은 11.5 Pflops(페타플롭스, 테라플롭스의 1천 배)로 이는 수퍼 컴퓨터 수준의 성능임



<자료> Engadget


[그림 3] 인공지능용 프로세서 Cloud TPU() AI 퍼스트 데이터센터(아래)


Ø TPU 파드는 랙에 탑재되어 구글 연산 엔진(Google Compute Engine)으로 제공될 것이며, 구글은 Cloud TPU를 이용한 AI 처리 전용 데이터 센터를 구축할 계획인데, 이를 AI 최우선 데이터센터(AI First Datacenter)라 부르고 있음


Ø Cloud TPU 발표와 동시에 구글은 텐서플로우 리서치 클라우드(TensorFlow Research Cloud)를 발표했는데, 이는 Cloud TPU 1천 개 연결한 연구자들을 위한 클라우드 서비스로 고도의 AI 기술 개발을 위해 무상으로 제공한다고 함


ž 「응용기술」 분야와 관련해서는 인공지능을 카메라에 응용한 신제품 구글 렌즈(Google Lens)를 적용 사례로 소개하였음


Ø 구글 렌즈는 카메라의 렌즈를 AI로 구성한다는 아이디어로, 카메라의 기능과 성능을 AI 소프트웨어가 결정한다는 뜻이며, 사진 촬영을 시작하면 카메라가 AI를 이용해 이미지를 재구성함


<자료> Google.ai


[그림 4] 카메라에 AI를 결합한 구글 렌즈


Ø 가령 [그림 4]처럼 야간 촬영 시 이미지에 노이즈가 있을 경우 AI가 이를 보정하는데, 셔터를 누르면 카메라가 자동으로 여러 차례(16, 32회 등) 빛에 노출시킨 후 노이즈를 제거하는 것을 반복하게 됨


Ø 또한 철조망 뒤에서 사진을 찍을 경우 AI가 자동으로 철조망을 제거하는 이미지 인페인팅(Image Inpainting) 기능도 갖추고 있음


Ø 구글 렌즈는 카메라에 비친 객체를 판정하는 기능이 있어, 가령 꽃 촬영에 구글 렌즈 기능을 선택하면 꽃의 종류가 무엇인지를 식별하고, 길거리 상점을 촬영하면 그 간판의 이름을 인식한 후 관련된 정보를 함께 표시해 줌


Ø 즉 카메라가 이미지 검색의 입력 장치가 되는 것으로 이는 구글 고글(Google Goggles) 등에서 이미 제공되는 기능이지만, AI를 이용하여 그 기능성과 인식 정확도를 향상시켰음


ž 드러나 보이지 않는 곳에서 AI를 이용해 구글의 서비스를 폭넓게 지원하는 응용 사례로는 구글 지도와 지메일을 소개하였음


Ø 카메라의 이미지 인식 기능을 AI와 접목하는 기술은 구글 스트리트 뷰(Street View)와 구글 지도(Google Maps)에도 적용되어 활용되고 있음


Ø 스트리트 뷰는 촬영된 이미지에서 건물에 부착되어 있는 숫자를 읽어 식별할 수 있었는데, 지금은 AI가 숫자뿐만 아니라 거리의 이름도 읽어 정확히 위치를 파악할 수 있음


Ø 표지판이 선명하게 찍혀 있지 않은 경우라도 샘플이 네 장 AI가 정확하게 판정할 수 있다고 하는데, 구글은 이 기술을 스트리트 뷰로 촬영한 800억 장의 이미지에 적용하여 위치를 파악하고 있기 때문에 구글 지도의 정확도를 크게 향상시켰다고 함


Ø 이미지 인식 기능의 활용은 와이파이 접속에도 이용할 수 있는데, 스마트폰으로 와이파이 네트워크 이름과 패스워드를 스캔하면 자동으로 와이파이에 연결하도록 도와줄 수 있음


Ø 스마트 회신(Smart Reply) 기능이 탑재된 지메일 역시 AI의 지원으로 구글 서비스 편의성을 강화한 대표적 사례인데, AI는 수신한 메일의 제목과 내용을 파악하여 이용자를 대신해 최적의 회신 문장을 생성한 다음 이용자에게 제시함


Ø 이용자는 AI가 제시한 세 개의 회신 문장 중에서 가장 낫다고 생각하는 하나를 클릭하는 것만으로 메일 회신을 할 수 있는데, 스마트 회신 기능이 등장한 지는 1년이 넘었으며 지금은 다소 복잡한 내용의 메일에도 회신 문장을 생성할 수 있는 수준이 되었음




<자료> Engadget


[그림 5] 인공지능 활용한 이미지 인식 기능 개선()과 이메일 자동 회신(아래)


Ø 이처럼 인공지능은 겉으로 드러나게 또는 드러나지 않게 기능성 향상에 기여하고 있으며, 구글은 이번 개발자 컨퍼런스에서 향후 자신들의 모든 제품과 서비스에 AI를 적용해 개선시키겠다는 목표를 밝힌 것임


ž 「응용기술」 분야와 관련해서 또 하나 주목할 것은 구글이 AI를 의료 분야에 적용할 계획임을 명시했다는 것으로, 향후 IBM 및 애플과 치열한 기술 경쟁을 예고하고 있음


Ø 구글은 이미 AI를 사용하여 당뇨 망막증(Diabetic Retinopathy) 판정 시스템을 발표한 바 있는데, 이 병은 당뇨 합병 질환으로 실명 위기까지 이어질 가능성이 높은 것으로 알려져 있어, 정확한 판정 시스템의 개발은 질병의 조기 발견과 치료에 상당한 기여를 할 것으로 기대되고 있음


Ø 구글에 따르면 AI는 이미 의사보다 높은 정확도로 당뇨 망막증 진환을 감지해 내는 데 성공했으며, AI를 의료 이미징에 활용할 수 있다는 것이 증명되자 구글은 자회사 딥마인드(DeepMind) 함께 의료 분야에서 AI 연구 개발을 중점적으로 추진하고 있음


<자료> Google


[그림 6] AI를 이용한 의료 이미지 판독


Ø 구글이 개발한 이미지 인식 알고리즘인 구글 인셉션(Google Inception)은 세계 최고 수준의 성능으로 평가받고 있는데, 구글은 누구나 자유롭게 이 소프트웨어를 이용하여 진단 및 치료 솔루션을 개발할 수 있도록 공개하고 있음


Ø 가령 구글 인셉션 소프트웨어를 피부암의 판정에 응용하면 전문의보다 정확하게 질병을 판정 할 수 있는 것으로. 나타났는데, 특별한 알고리즘이 필요하지 않아 암 탐지 시스템의 개발 문턱이 극적으로 낮아졌기 때문에 이미 피부암 판정 스마트폰 앱까지 등장하고 있는 상황


Ø IBM 왓슨의 선도적 비즈니스가 성과를 거두며 의료 분야에서 AI 활용에 대한 평가와 전망은 매우 긍정적인데, 구글과 기술 경쟁, AI 기반 의료 기술의 공개화 등 흐름과 맞물린다면, 의료 분야에서 AI 기반의 혁신 사례는 잇따라 등장할 것으로 예상됨


ž 구글은 자신들의 모든 영역에 AI를 적용하고자 하는 AI 최우선 기업으로서 그 성과를 어필했지만 이제 시작일 뿐이며, 시장 지향 AI를 향한 본격적 행보 선언에 그 의의가 있음


Ø 구글은 인공지능 퍼스트를 모토로 내세운 기업으로 그간의 연구개발 성과와 응용사례를 소개했지만, 이번 연례 개발자 컨퍼런스에서 새로운 비전을 제시하는 놀라운 기술과 제품은 등장하지 않았다는 평가가 지배적


Ø 구글 렌즈 등의 기능도 이미 일부 활용되고 있는 기술이고, AI를 음성 인식에 응용해 고급 자연언어처리 접목한 인공지능 스피커 '구글 홈이나 가상 비서 구글 어시스턴트도 이미 소개된 기술일뿐더러 이 분야에서는 오히려 아마존 에코와 알렉사가 시장을 선점하고 있는 상황임


Ø 이는 세계 최고 수준의 AI 기술을 보유하고 있는 구글이지만, 의료와 같은 특수 분야를 차치하고 나면 일상적으로 소비자들이 AI의 혜택을 느낄 수 있는 제품과 서비스를 개발한다는 것은 쉽지 않은 일이라는 것을 보여주는 대목


Ø 기술 특이점(singularity) 접근 전망과 함께 하루가 다르게 고도화되어 가고 있는 AI를 어떻게 제품과 서비스에 연결시킬 것인가에 대한 질문도 계속해서 나오고 있으며, 이에 대한 대답을 내놓는 것은 구글뿐 아니라 IT 업계가 공통으로 안고 있는 과제일 것임


Ø 그러나 어쩌면 소비자의 욕구와 잠재 욕망을 자극할 수 있는 AI 기반 제품과 서비스의 개발 역시 사람이 아닌 인공지능 스스로가 만들어 낼 지도 모를 일이며, 그런 면에서 AI AI를 만든다는 모토를 제시하고 있는 구글이 접근방식에서는 유리한 상황이라 할 수 있겠음