※ 아래 글은 정보통신기술진흥센터(IITP)가 발간하는 주간기술동향 1818호(2017. 10. 18. 발행)에 기고한 원고입니다.


▶ IITP에서 PDF 포맷으로 퍼블리싱한 파일을 첨부합니다. 가독성이 좋으니 참고하시기 바랍니다.

구글 하드웨어 신제품 발표, 제품 차별화 요소는 ‘AI 최적화’.pdf



[ 요 약 ]


구글이 작년에 이어 메이드 바이 구글(Made by Google) 행사를 통해 신제품을 대거 공개했는데올해 신제품 발표회의 테마는 하드웨어와 소프트웨어그 중에서도 인공지능(AI)의 통합이었음구글은 이번 신제품에 최신 AI 기술의 성과를 광범위하게 적용하며향후 AI가 기기 차별화의 결정적 요인이 될 것으로 바라보고 있음을 드러냈음스마트 기기의 하드웨어 차별성이 점차 엷어지는 가운데소프트웨어 최적화를 넘어선 AI 최적화가 제품 경쟁의 새로운 화두가 될 것으로 예상됨



[ 본 문 ]


ž 작년 10메이드 바이 구글(Made by Google) 하드웨어 신제품 5개를 일거에 출시했던 구글이 1년 만에 다시 신제품을 대거 발표하였음


Ø 이번에 발표한 신제품은 작년에 출시된 제품의 업그레이드 버전도 있지만, 구글로서는 새롭게 시도하는 제품들도 포함되어 있음


<자료> Google

[그림 1] Made by Google 2017


Ø 작년에 선보인 구글 자체 스마트폰 픽셀(Pixel)의 후속 버전으로 픽셀 2가 발표됐으며, 역시 작년에 선보인 인공지능(AI) 스피커 구글 홈(Google Home)은 이번에 구글홈 미니(Mini)구글홈 맥스(max)로 라인업이 확대되었음


Ø 올해 새롭게 선보인 제품으로는 액션 카메라인 구글 클립스(Google Clips)와 음악 재생 및 외국어 번역에 사용하는 블루투스 헤드셋 구글 픽셀 버즈(Google Pixel Buds), 그리고 크롬북의 상위 버전이라 할 수 있는 노트북 픽셀북(PIxelbook)이 있음


Ø 작년 10월에 이어 1년 만에 다시 하드웨어 발표회를 개최함으로써 향후 구글이 5월에 개최되는 연례 개발자 컨퍼런스 구글 I/O에 이어 10월의 신제품 발표회를 연례 행사화 할 가능성도 점쳐지고 있음


ž 이번 신제품 발표회의 테마는 하드웨어에 소프트웨어와 인공지능(AI)을 통합하는 것으로, 구글이 AI를 제품 차별화의 결정적 요인으로 바라보고 있음을 드러냄


Ø 구글홈 미니는 아마존의 소형 AI 스피커인 에코닷(Echo Dot)의 대항마 성격으로, 가격은 49 달러이지만 AI 가상비서 기능인 구글 어시스턴트(Google Assistant)가 탑재되어 있음


Ø 미니는 도넛 크기의 타원형 형상으로 상단에 LED가 탑재되어 기기 상태를 표시해주는데, 에코닷과 마찬가지로 가정 내 각 방에 하나씩 놓고 사용하는 것을 전제로 디자인 한 것으로 보이며, 구글이 집 전체 공간을 AI로 채우고 싶어함을 유추할 수 있음


Ø 맥스는 음질을 중요한 모델인 동시에 구글이 400 달러인 가격에 걸맞게 구글홈보다 20배 정도 성능이 강력하다고 소개할 정도로 AI 기반의 사운드 재생 기능이 뛰어난 기기임


Ø 2개의 4.5인치 우퍼를 내장해 깊이 있는 사운드 재생이 가능하며, 스마트 사운드(Smart Sound) 기능을 탑재하고 있어 주변 환경과 사용자의 컨텍스트에 맞게 음악을 재생할 수 있음



<자료> Google


[그림 2] 구글홈 미니(Mini)와 맥스(Max)


Ø 구글은 스마트 사운드 기능의 예로 AI가 방의 모양을 파악해 그에 적합한 사운드를 재생하거나, 아침 시간에는 볼륨을 좀 낮추어 재생하고 식기 세척기가 가동 중이어서 시끄러울 때는 볼륨을 높여 음악을 재생하는 것 등이 가능하다고 설명하고 있음


Ø 픽셀 2 스마트폰에는 지난 5월 구글 I/O에서 소개한 구글 렌즈(Google Lens) 기능이 처음으로 적용되었는데, 구글 렌즈는 구글 어시스턴트를 기반으로 렌즈에 비친 사물에 대한 정보를 불러들인 후 사진에 담긴 물체나 글자를 인식해 알려주는 AI 카메라임


Ø 픽셀북은 노트북과 태블릿 PC를 결합한 것으로 역시 구글 어시스턴트가 적용되어 있으며, 가령 픽셀북 펜을 이용해 디스플레이 화면 안의 특정 부분에 원을 그리면 구글 검색 엔진이 그 원안의 물체를 인식하고 관련된 정보를 검색해 줌


ž 구글이 AI를 신제품의 차별화 요소로 삼는 이유는, AI가 비단 구글의 하드웨어 신제품뿐 아니라 스마트 홈 생태계의 허브 기능을 담당할 것으로 보기 때문임


Ø 구글홈의 핵심 기능인 구글 어시스턴트는 스마트폰(안드로이드와 iOS), 스마트 워치(안드로이드 웨어), 텔레비전(안드로이드 TV) 등과도 연계할 수 있으며, 가상 비서의 인터페이스는 급속하게 음성으로 전환하고 있음


Ø 구글 어시스턴트는 생태계를 급속히 확장하고 있는데, 현재 스마트 홈 관련 기업 네스트(Nest), 필립스(Philips), 스마트씽스(SmartThings) 등이 내놓은 1천여 제품과도 연계가 가능함


Ø 특히 알파벳 산하의 네스트와 구글홈의 연계가 더욱 강화되고 있는데, 이번 기능 업그레이드로 네스트의 보안 카메라인 네스트 캠(Nest Cam)을 구글홈에서 조작할 수 있게 되었음


<자료> Google


[그림 3] 구글홈과 네스트 캠의 연계


Ø 이로써 가령 현관에서 무슨 소리가 나는 것 같을 때 구글홈에게 현관 앞 상황을 TV로 보여줘라고 명령하면, 구글홈이 네스트 캠에 찍힌 영상을 TV로 디스플레이 하는 것이 가능해졌음


Ø 또한 네스트의 스마트 초인종인 네스트 헬로(Nest Hello)도 구글홈에서 조작할 수 있게 되었는데, 네스트 헬로는 얼굴 인식 기능으로 방문자를 식별할 수 있는 친숙한 얼굴(Familiar Faces)라는 기능을 탑재하고 있음


Ø 따라서 누군가 초인종을 누르면 네스트 헬로가 그 인물을 인식해 구글홈에 알려주고, 구글홈이 이용자에게 방문자의 이름을 알려주는 것이 가능하며, 이런 기능을 활용해 네스트와 연계한 주택의 보안을 구글홈에서 집중 관리하는 것이 가능함


Ø 구글 어시스턴트가 허브가 되는 스마트 홈은 개인화 서비스도 가능한데, 보이스 매치(Voice Match) 기능을 통해 동시에 여섯 명의 목소리를 구분해 알아 듣고 개별 대응이 가능하기 때문


Ø 개인 맞춤형 서비스의 예로 이번 신제품 발표회에서는 에브리데이 루틴(Everyday Routines) 기능이 소개되었는데, 이는 한 단어만 듣고 그 사람과 관련된 여러 가지 명령을 동시에 실행하는 것으로 구글의 지향점을 잘 보여주고 있음


Ø 가령 식구들 중 회사로 출근을 해야 하는 사람이 있을 경우, 이 사람이 아침에 일어나 좋은 아침이라고 한 마디만 하면, 구글홈이 그의 하루 일정을 확인하고 일정에 따른 이동 경로의 도로 정체 정보를 알려주며 주요 뉴스를 읽어주도록 설정할 수 있음


Ø 또한 아이들이 구글홈에게 우리 게임하자라고 말을 할 경우, 아이들의 목소리를 인식하여 아이들이 안전하게 즐길 수 있는 게임을 실행하도록 설정할 수도 있음


ž 구글은 AI가 스마트 홈의 허브로 선택될 수 있도록 인간 친화적인 특성을 띠게 하는 데도 공을 들였는데, 여기에는 딥마인드(DeepMind)의 새로운 음성합성 기술이 기여를 하였음


Ø 구글홈의 음성 발화는 고급 AI가 적용되어 매우 매끄럽게 들리는데, 여기에는 딥마인드가 지난해 발표한 새로운 음성 합성(Speech Synthesis) 기술이 관여되어 있음


Ø 딥마인드가 새롭게 발표한 웨이브넷(WaveNet)은 심층신경망(Deep Neural Network)을 이용해 기계음이 인간에 가깝게 자연스럽게 발성할 수 있게 해주는 음성 합성 기술임


Ø 일반적으로 음성 합성은 말을 아주 작은 단위로 나눈 다음 필요한 음운, 음소, 단어에 맞게 조립하는 음성 연결 합성(Concatenative TTS)이라는 기법 사용하는데, 이 때문에 기계음은 말 그대로 기계적이고 어색한 톤으로 발화가 됨


Ø 딥마인드는 기존의 방식과 전혀 다른 접근 방식을 취했는데, 웨이브넷은 많은 수의 음성 샘플을 배우고 음성 파형(Audio Waveform)을 잘게 세분화 해 분석함으로써 음성 만으로는 알 수 없었던 숨 고르기나 단어 혹은 문장끼리 합쳐지는 방식까지 이해가 가능하게 하였음


Ø 구체적으로 살펴 보면 컨볼루셔널 신경망(Convolutional Neural Network, CNN)이 발화의 구성을 파악하여 어떤 음색(Tone) 후에 어떤 음색이 이어지는지, 어떤 파형(Waveform)이 자연스러운지 학습하게 되며, 이를 토대로 아주 부드러운 음성을 합성하게 됨


Ø 딥마인드는 웨이브넷이 인간의 미묘한 톤이나 억양, 말할 때의 속도 등을 그대로 재현할 수 있다고 설명했는데, 음성 연결 합성 방식이나, 인간 음성 샘플 없이 기계가 음성을 생성하는 방식(Parametric TTS) 등 기존 기술과 블라인드 테스트를 한 결과 인간의 실제 음성에 육박하는 수준의 높은 점수로 1위를 차지했다고 함


Ø 단 작년 발표 시점에서 웨이브넷은 음성 합성을 빠르게 수행 할 수 없어 0.02 초의 오디오를 생성하는데 1 초가 필요했으나, 그 동안 알고리즘 개선을 통해 빠른 음성 합성까지 가능해졌다고 하며, 현재 1 초 길이 오디오를 50 밀리 초에 생성하므로 실시간 사용이 가능하다고 함


[1] 딥마인드 웨이브넷과 음성 합성 기술의 비교

 

Concatenative

Parametric

WaveNet

인간의 음성

미국식 영어

3.86

3.67

4.21

4.55

만다린 중국어

3.47

3.79

4.08

4.21

<자료> DeepMind


ž 하드웨어들의 주요 기능이 점차 천편일률적으로 되어 가는 상황에서, 이번 구글의 신제품 발표회는 향후 AI 최적화가 스마트 기기의 시장 성패를 가르게 될 것임을 강하게 시사


Ø 구글홈을 비롯해 이번에 구글이 발표한 제품들의 배후에는 최신 AI 기법이 광범위하게 사용되고 있는데, 이용자의 음성을 인식하는 데뿐만 아니라 음성 합성 역시 AI 없이는 매력적인 특색을 실현할 수 없음을 보여주고 있음


Ø 소프트에어 기업인 구글이 자체 하드웨어 생산에 나선 데에는 여러 가지 이유가 있겠으나, 하드웨어를 통한 차별화는 이제 한계에 다다르고 소프트웨어를 통한 차별화, 그 중에서도 AI에 의한 차별화가 제품 경쟁력의 핵심 요소가 될 것으로 판단했기 때문이라 볼 수 있음


Ø 가령 지금까지 스마트폰의 경쟁 구도는 애플의 소프트에어 최적화와 삼성전자의 하드웨어 고사양화로 요약할 수 있는데, 아이폰이 상대적으로 낮은 하드웨어 사양을 소프트웨어 최적화로 커버했다면, 갤럭시 폰은 소프트웨어의 단점을 하드웨어 혁신으로 커버하는 전략이었음


Ø 그러나 최근 들어 아이폰이나 갤럭시 폰을 비롯해 대부분의 스마트폰 사양들은 유사해지고 있는데, 구글은 이를 하드웨어 혁신의 속도가 둔화된 것, 즉 하드웨어 부문을 직접 관리하는 부담이 적어지는 신호로 받아들였을 가능성이 큼


Ø 따라서 보다 중요해지는 것은 애플과 같은 소프트웨어 최적화 역량인데, 구글은 안드로이드 OS와 하드웨어의 최적화에 덧붙여 AI 최적화를 무기로 하드웨어 비즈니스에 뛰어들려는 것으로 해석할 수 있음


Ø 하드웨어 경쟁력보다 소프트웨어 경쟁력이 압도적 이윤을 가져다 줄 수 있다는 점은 이미 애플과 삼성전자의 경쟁에서 확인된 바 있거니와, 구글은 이에 더해 AI가 제품의 차별화와 이윤을 가져다 줄 것이라 주장하는 것임


Ø 구글이 던진 AI 최적화의 화두는 스마트 디바이스 시장의 경쟁 지형을 새롭게 재편할 가능성이 크며, 디바이스 제조업체들 앞에 쉽지 않은 숙제가 던져진 셈

※ 아래 글은 정보통신기술진흥센터(IITP)가 발간하는 주간기술동향 1810호(2017. 8. 23. 발행)에 기고한 원고입니다.


▶ IITP에서 PDF 포맷으로 퍼블리싱한 파일을 첨부합니다. 가독성이 좋으니 참고하시기 바랍니다.

테슬라의 저가 자율주행 전기차 &lsquo;모델3&rsquo;, 새로운 자동차 시대 개막.pdf



[ 요 약 ]


테슬라가 7월부터 고객 인도를 시작한 모델3 3만 달러 대의 전기차인 동시에 향후 소프트웨어 업그레이드를 통해 사람이 완전한 자율주행 차량이 될 것을 목표로 하고 있음차량 가격을 낮추기 위해 테슬라는 고가의 라이더 장비를 쓰지 않고 인공지능을 기반으로 카메라 센서로만 가능한 자율주행 기술을 개발했는데보급형 자율주행차의 시판이 시작됨에 따라 차량 공유전통 자동차 산업의 붕괴세금재생에너지 등 다양한 이슈에 대한 사회적 논의도 본격적으로 시작되고 있음


[ 본 문 ]

ž 테슬라(Tesla)7월부터 차량 인도를 시작한 모델3(Model 3)는 보급형 전기차라는 점과 함께 완전 자율운전 차량을 지향한다는 점에서 주목을 받고 있음


Ø 모델3는 일론 머스크 CEO가 테슬라의 모든 것을 쏟아 부었다고 말한 대중형 전기차, 지속가능한 에너지로 전환이라는 일론 머스크의 포부를 지지한 50만 명의 사람들이 1년여 전 머스크의 약속만 믿고 예약금을 납부하여 출시 전부터 유명세를 탄 바 있음


<자료> Electrek

[동영상] 테슬라의 모델3 전기차


Ø 테슬라의 기존 전기차 모델 라인업이 최소 9 5천 달러여서 사실상 부유층만 구매 가능했다면, 모델3는 일반 자동차 가격과 비슷한 수준이기 때문에 전기차의 대중화에 결정적 기폭제가 될 것으로 기대를 모아 왔음


Ø 모델3의 기본형인 스탠더드 버전의 가격은 테슬라가 지금껏 약속했던 대로 3만 달러 대인 3 5천 달러이고 장거리 운행용인 롱레인지 버전도 4 5천 달러인데, 미국 정부의 보조금을 받을 수 있기 때문에 실제 비용은 5천 달러 이상 더 낮아 짐


Ø 스탠더드 모델은 완전 충전 시 350km를 달릴 수 있고 제로백은 6초 미만에 최고 속도 시속210km이며, 롱레인지 모델은 500km 주행이 가능하고 제로백은 5초 초반에 최고 속도 시속 225km여서 일반 자동차를 대체하기에 충분한 성능을 제공하고 있음


Ø 게다가 모델3향상된 자동운전 지원 기능(Enhanced Autopilot)을 제공하고 있는데, 이 기능은 자율운전 기능으로 업그레이드 될 수 있어 모델3가 대중적 성공을 거두게 된다면 단순히 전기차 보급 확대 차원을 넘어서는 사회적 영향력을 가져올 것으로 보임


ž 모델3는 자율운전에 필요한 하드웨어 장비를 탑재하고 있으며, 소프트웨어를 업데이트 하는 것 만으로 완전 자율운전차량(레벨 5)이 될 수 있다고 함


Ø 테슬라는 완전한 자율운전 기능(Full Self-Driving Capability)의 제공을 강조하고 있으며, 이를 위해 모델S의 최신 라인업과 모델3에 필요한 장비를 탑재했는데, 센서로 자동차 주위에 8대의 카메라와 초음파 센서 12, 자동차 전면에 레이더 1개를 장착하고 있음


Ø 테슬라는 레이저 센서인 라이더(Lidar)는 사용하지 않기 때문에 카메라가 자동차의 눈이 되며, 센서 데이터들은 차량용 슈퍼 컴퓨터인 엔비디아 드라이브(Nvidia Drive) PX2로 처리됨


Ø 자율운전 기능은 향상된 오토파일럿 기능 위에 구축되는데, 자율운전을 희망하는 운전자는 우선 모델3의 기본 차체에 옵션으로 5천 달러를 내고 오토파일럿 기능을 추가해야 하며, 다시 3천 달러를 추가해 자율운전이 가능하도록 소프트웨어를 업그레이드 해야 함


Ø 8천 달러의 추가 요금을 통해 완전한 자율운전차량(레벨 5)을 손에 넣을 수 있게 되는 것인데, 테슬라는 이 기능의 제공 시기에 대해 아직 명확히 밝히고 있지 않으며 현재 완전한 자율운전 기능의 시험을 거듭하고 있는 중이라 말하고 있음


Ø 시기를 정확히 못박을 수 없는 것은 정부로부터 인가가 필요한 사안이고 따라서 자율운전 차량의 운행이 가능한 지역은 연방 정부 혹은 주 정부의 판단으로 결정될 것이기 때문


ž 테슬라는 라이더 센서 없이 저비용으로 자율운전 기능을 구현하고 있는데, 이를 위해 선택한 방식은 인공지능(AI) 역량을 강화해 소프트웨어 중심축을 둔 시스템을 구현하는 것


Ø 자율운전 차량에 탑재되는 여러 종류의 센서 중에서 가장 널리 사용되고 있는 것이 라이더인데, 라이더는 레이저 광으로 자동차 주위의 보행자나 다른 차량 등 객체를 파악하며, 다양한 조건 속에서도 안정적으로 측정 할 수 있어 가장 필수적인 센서로 받아들여지고 있음


Ø 반면 라이더는 부피가 있고, 가격이 비싸며 해상도가 충분하지 않은 것이 단점인데, 지붕에 장착하면 구급차의 사이렌 불빛을 방불케 해 디자인 측면에서 심각한 문제를 야기하며, 그 자체로 7만 달러 안팎인 부품 가격은 자율운전 차량 대중화에 최대 걸림돌로 지적받고 있음


Ø 라이더를 반도체 칩에 구현하여 소형화 한 제품이 등장하고 있기도 하지만 해상도가 충분하지 않아 아직 자율운전 차량에 탑재되지 못하고 있음


<자료> recode

[그림 2] 웨이모와 우버 차량의 라이더 센서


Ø 구글의 자회사인 웨이모(Waymo)는 이 문제를 해결하기 위해 독자적인 기술로 라이더를 개발하고 있는데, 라이더를 소형화하고 해상도를 향상시키되 가격은 기존 상용 제품의 1/10 수준으로 낮춰 자율운전 차량의 대중화를 위한 기술 기반을 닦고 있음


Ø 이와 더불어 웨이모는 비전 시스템(Vision System)이라 부르는 고성능 카메라도 개발하여 라이더와 함께 사용하고 있는데, 이런 방식은 센서 퓨전(Sensor Fusion)이라 불리며 자율운전에서는 사실상 표준 기술로 받아들여지고 있음


Ø 개별적으로는 불완전한 센서들이지만 이들을 조합하여 사용하면 전체 시스템에서는 선명한 영상을 얻을 수 있기 때문에, 센서 퓨전은 가장 안정적인 자율운전 구현 방법으로 웨이모 이외에 많은 기업들이 채택하고 있음


Ø 이런 현실에 비추어 보면 테슬라가 라이더 없이 카메라만으로 자율운전 기술을 구현하는 것도 차량 가격을 낮추는 혁신적인 방법이라 할 수 있음


Ø 딥러닝 기술을 바탕으로 카메라와 같은 일상적인 기기를 사용하여 안전한 자율운전 기술을 달성하려는 테슬라의 선택은 하드웨어가 아닌 소프트웨어에 축을 둠으로써 가격의 문제를 해결하려는 것으로, 테슬라 전기차 비즈니스의 성패를 좌우할 승부수라고 할 수 있음


ž 이런 배경 하에 테슬라는 자체 AI 개발 체제를 강화해 왔으며, 독자적인 자율주행 AI 기술인 테슬라 비전(Tesla Vision)은 테슬라 사업의 성패를 가름할 핵심 기술로 꼽히고 있음


Ø 테슬라의 독자적인 AI 기술은 테슬라 비전이라 불리는 심층신경망(Deep Neural Network)을 기반으로 구축되는데, 테슬라 비전은 차량에 탑재된 카메라로부터 영상이 입력되면 이를 분석하여 차량 주변의 개체를 파악하게 됨


Ø 기존의 컴퓨터 비전(Computer Vision) 기술을 고도화 한 테슬라 비전은 객체를 빠짐없이 정확하게 확인할 수 있어, 안전성이 최우선으로 요구되는 자동차에 AI가 시각을 담당하는 자율운전 기술의 접목을 가능케 한다고 함


<자료> Tesla

[그림 3] 테슬라 비전의 객체 인식


Ø 테슬라는 테슬라 비전을 탑재한 차량의 자율운전 데모 주행을 실시했는데, 테슬라 본사에서 출발해 다운타운을 통과해 다시 본사로 돌아오는 루트의 전 과정을 자율운전으로 주행하였음


Ø 데모 주행에서 테슬라 비전은 카메라 이미지를 분석하고 자동차 주위의 객체와 주행 경로 상의 객체, 차선, 신호등, 도로 표지판 등을 정확히 식별할 수 있음을 보여주었는데, 전문가들은 테슬라 비전의 완성도가 테슬라 자율주행 전기차 사업의 성패를 쥐고 있다고 보고 있음


Ø 이를 인정하듯 테슬라는 AI 개발 체제를 강화하고 있는데, 올해 6월에는 AI와 오토파일럿 부문에서 최고라 평가받고 있는 딥러닝 연구 전문가 안드레이 카패시를 채용하였음


Ø 또한 테슬라는 현재 판매되어 운행 중인 차량이 주행 중에 촬영하는 영상 이미지를 수집하기 시작했는데, 오토파일럿이 실행되는 동안 카메라가 촬영한 영상이 테슬라 클라우드로 전송되면, 테슬라는 수집된 이미지를 이용해 자율운전 기술을 정교화해 나가고 있음


Ø 웨이모는 개발 전용 차량으로 비디오 이미지를 수집할 수 밖에 없지만, 테슬라는 판매된 자동차들이 테스트 차량이 되어 대규모로 데이터를 수집하여 AI에 대한 교육이나 테스트에 활용할 수 있다는 것이 최대 강점임


ž 테슬라가 지향하는 완전 자율운전 차량 기술은 이용자와 차량 간의 인터페이스에도 큰 변화를 가져올 것으로 보임



Ø 모델3는 자동차 키가 별도로 없고 스마트폰이 블루투스로 도어와 통신하며 잠금과 해제를 하기 때문에 이용자가 스마트폰이 있어야만 탑승할 수 있는 구조로 되어 있으며, 다만, 긴급 사태에 대비해 전용 카드(NFC Key Card)가 제공되고 있음


Ø 운전석에는 15인치 디스플레이만 갖추고 있고 여기에서 모든 작업을 지시하는데, 최소한의 장비만 갖추고 점점 더 심플해지는 실내 디자인은 마치 애플의 제품 디자인을 연상시켜며, 자동차가 점차 컴퓨터에 접근하고 있음을 확인시켜주고 있음


<자료> Tesla

[그림 4] 모델3의 차량 내부 인테리어


Ø 테슬라는 모델3로 자율운전 할 수 있는 장소는 미국의 거의 모든 지역이라 설명하고 있는데, 탑승하여 목적지를 말하면 최적의 경로를 산정하여 그 위치까지 자동으로 주행하며, 목적지를 말하지 않으면 차량이 탑승자의 일정을 참조하여 행선지를 파악함


Ø 목적지에 도착하여 하차하면 자동차는 주차 모드가 되어 자동으로 빈 공간을 찾아 주차를 하며, 다시 차량을 이용하기 위해 스마트폰으로 자동차를 호출하면 자율주행으로 지정한 장소까지 와서 이용자를 맞이함


ž 이런 인터페이스 변화는 필연적으로 차량 소유가 아닌 차량 공유의 개념을 강화하게 되는데, 테슬라는 이미 카 쉐어링을 위한 자동차 네트워크를 개발하고 있음


Ø 지금은 차를 운전해 출근할 경우 퇴근하기 전까지 차량을 어쩔 수 없이 주차장에 주차시켜 놓아야 하며, 부분적으로 자율운전 기능을 구현한 차량이라 하더라도 현행 법률상 반드시 운전자가 탑승해야 주행이 허용되므로 주행 후에는 차량을 놀릴 수밖에 없음


Ø 그러나 완전 자율운전 차량은 탑승자를 목적지로 옮긴 후 그 곳에 계속 머무를 필요가 없으며 스스로 다른 곳으로 이동해 다른 탑승자를 태우는 일을 할 수 있어 상황이 완전히 달라짐


Ø 이런 점 때문에 자율운전 차량은 본질적으로 차량 공유 개념과 밀접하게 연관되어 있으며, 환경운동가들이 차량 감소와 주차 공간 효율화의 유력한 방안으로 자율운전 기술을 지지하고 나서는 이유가 되고 있음


Ø 테슬라는 자율운전 자동차들을 연결하는 네트워크인 테슬라 네트워크(Tesla Network)를 개발하고 있는데, 자동차가 완전 자율운전 차량이 되면 이를 통해 차량을 공유할 수 있게 될 것이라는 설명


Ø 가령 모델3 소유자는 휴가 기간이나 업무 시간대 등 자동차를 사용하지 않는 동안에 테슬라 네트워크 앱을 통해 이 차량을 다른 이용자에게 대여한다고 허용할 수 있고, 다른 이용자가 자신의 차량을 이용할 경우 임대 소득을 올릴 수 있게 된다는 것임


Ø 공유되는 차량은 자율운전으로 임차인의 위치로 직접 이동할 수 있으므로, 이용자 입장에서도 빌리는 데 전혀 수고가 들지 않는데, 테슬라 네트워크는 자율운전 자동차 시대의 카 쉐어링의 모습을 머리 속에 그릴 수 있게 해주고 있음



<자료> Tesla


[그림 5] 우버와 경쟁하게 될 테슬라 네트워크



ž 카 쉐어링 뿐만 아니라 모델3는 새로운 자동차 시대로의 전환 속도를 대폭 앞당길 것으로 보이며, 자동차 산업 구조조정, 세금, 전력 등 각종 이슈의 활발한 논의를 촉진할 전망


Ø 카메라만으로 자율운전 기술을 개발하는 것은 고가의 라이더에서 벗어나 자율운전 차량을 대중화시킬 수 있는 방안으로 전세계 연구개발팀의 공통된 목표였으며 현재 테슬라가 가장 가까운 위치에 있다고 할 수 있음


Ø 테슬라 역시 아직 완전히 기술을 달성한 것으로 보이지 않지만 시판되고 있는 차량에서 수집한 데이터로 AI 개발을 가속화하고 있기 때문에 예상보다 이른 시점에 자율주행 차량이 대중적으로 보급될 가능성이 보이고 있음


Ø 일론 머스크는 2018년에 50만 대 생산, 2020년에 100만 대 생산을 목표로 하고 있는데, 그의 계획이 실현된다면 모델3는 사회 전반에 커다란 파장과 이슈를 몰고 올 것이 자명함


Ø 모델3의 고객 인도가 시작되며 이미 고급 세단의 판매량이 줄기 시작했는데 BMW 3시리즈와 메르세데스 C클래스의 7월 미국 판매는 각각 40% 22% 감소했다고 하며, 현재 모든 예약이 실제 주문으로 이어진다면 모델3는 미국에서 가장 많이 팔린 자동차가 될 수도 있음


Ø 이는 전통적인 자동차 산업 생태계에는 엄청난 압박이 될 것이며, 자동차 업체들은 테슬라와 기술 경쟁을 해 승리하거나 테슬라의 사업이 망하길 비는 수밖에 없음


Ø 모델3 생산이 시작되자마자 미국에서는 기존 자동차의 판매 감소에 따른 휘발유세 감소를 보완할 세원으로 차량의 주행거리에 세금을 부과하는 마일리지세 논의가 시작됐는데, 마일세는 각종 센서와 통신 장치가 장착돼 주행거리 파악이 쉬운 전기차를 겨냥한 것임


Ø 전기차 대중화로 전력 부족 현상이 초래될 것에 대비한 논의도 시작되고 있는데, 블룸버그에 따르면 세계 전력 소비에서 전기차 충전이 차지하는 비율이 2040년에 8%에 달할 것으로 보임


<자료> APRS


[그림 6] 전기차에 대한 마일리지세 부과 논의



ž 테슬라의 사업에 현재 많은 위험이 존재하는 것도 사실이지만, 간과하지 말아야 할 것은 테슬라의 비전이 사람들의 마음을 움직이고 있으며 미래는 그렇게 갈 가능성이 크다는 점


Ø 테슬라의 2분기 실적 보고서에 따르면 매출은 약 27 9천만 달러로 전년 동기의 12 7천만 달러에 비해 2.2배 증가했으나 영업적자는 약 34천만 달러로 전년 동기의 2 9천만 달러 적자에 비해 적자 폭이 오히려 커졌음


Ø 적자 폭이 커진 원인은 모델3 개발과 생산 설비 확대 때문인데, 이처럼 취약한 재무구조와 로드스터, 모델S, 모델X 등 지금까지 출시된 차량들이 모두 차량 인도가 6~18개월 이상 지연된 과거 사례를 들어 모델3의 생산계획이 머스크의 바람대로 되지는 않을 것이란 분석이 많았음


Ø 자금 위기를 넘기기 위해 테슬라는 올해 7월 처음으로 15억 달러 규모의 회사채를 발행했는데, 국제 신용평가 기관인 무디스는 테슬라의 채권에 투자적격 등급 보다 6단계 아래로 평가하였고 S&P는 전체 21개 등급 가운데 16등급, 즉 사실상 망해가는 기업으로 평가하였음


Ø 그러나 정크 본드라는 평가와 달리 테슬라는 보통의 회사채들보다도 훨씬 낮은 수익률에 목표를 상회하는 18억 달러를 조달하였으며 2019년까지 현금 유동성을 확보하였음


Ø 전통적인 평가 기준과 달리 투자자들은 테슬라의 비전에 전폭적인 지지를 보내고 있는 것이며, 적자 폭이 늘어나는 것과 무관하게 올해 들어 테슬라의 주가는 70% 이상 급등하였음


Ø 비전이 사람들의 마음을 움직이는 것은 그것이 구체적인 것으로 받아들여질 때인데, 가령 모델3의 출시로 전기차 충전에 의한 전력 부족 문제에 대한 이슈가 제기되면, 태양광 패널업체 솔라시티를 26억 달러에 인수한 테슬라의 결정은 사람들에게 구체적 액션 플랜으로 인정받게 됨


Ø 보급형 자율주행 전기차의 등장과 태양광 패널로 테슬라는 이미 미래를 현실로 보여주었으며, 이는 이제 거스를 수 없는 흐름이 될 가능성이 높기 때문에, 미래를 준비하기 위한 생각과 발걸음의 속도에 더 이상 여유가 없다는 점을 직시할 필요가 있음

※ 아래 글은 정보통신기술진흥센터(IITP)가 발간하는 주간기술동향 1792호(2017. 4. 19 발행)에 기고한 원고입니다. 


▶ IITP에서 PDF 포맷으로 퍼블리싱한 파일을 첨부합니다. 가독성이 좋으니 참고하시기 바랍니다.

화가와 인공지능의 패스티쉬 대결 예술로 가는 AI.pdf



[ 요 약 ]


빈센트 반 고흐의 일생을 고흐의 화풍으로 그린 6 5천장의 유화 작품으로 구성한 독특한 장편 애니메이션 러빙 빈센트에는 고흐 풍의 유화 제작을 위해 115명의 화가들이 참여하였음한편 영화 제작 기간 동안 구글은 인공지능(AI)이 특정 화가의 스타일을 습득한 다음 주어진 사진을 그 화가의 화풍으로 그린 그림으로 변환해 주는 기술을 발표하였음. AI를 이용한 패스티쉬(작품 모방)가 가능해짐에 따라 향후 인간과 AI의 협업을 통한 새로운 사업기회 모색이 활발히 전개될 전망


[ 본 문 ]


ž 영국의 영화사 브레이크스루(BreakThru Productions)는 최근 2011년부터 100여 명의 화가와 함께 작업해 온 장편 유화 애니메이션 러빙 빈센트(Loving Vincent)의 예고편을 공개


<자료> BreakThru

[동영상] 러빙 빈센트 공식 예고편


Ø 러빙 빈센트는 빈센트 반 고흐가 그린 작품과 함께 그의 작품 속 인물들과 가상 인터뷰를 통해 고흐의 삶과 인생을 내레이션 하는 애니메이션 영화로 반 고흐가 죽기 전 8년간의 인생에 초점을 두고 있다고 함


Ø 러빙 빈센트는 개봉 전부터 많은 관심을 받고 있는데, 세계 최초로 영화와 예고편 영상의 러닝타임에 등장하는 모든 프레임을 고흐 스타일의 유화 작품으로 구성했기 때문


Ø 영화 제작사는 화가로서 인생을 산 10년 동안 일주일에 약 두 점씩, 860여 점의 그림을 그리며 불꽃 같은 삶을 살다 간 빈센트 반 고흐의 삶을 고스란히 전달하기 위해 고흐 풍의 유화 애니메이션 영화를 만들게 되었다고 설명


Ø 영화의 프레임에 사용된 유화는 6 5천 점으로 영상 1초에 12점의 그림이 연사 된다고 하는데, 이를 위해 2011년부터 115 명의 화가가 유화 작업에 참여했다고 함



<자료> Hugh Welchman


[그림 1] 러빙 빈센트의 프레임 작화 방법


Ø 영화의 제작 방식은 배우의 연기를 카메라로 촬영한 다음 각 장면을 화가들이 유화로 그리는 것인데, 이를 위해 화가들은 고흐의 작품 스타일을 학습한 후 동영상의 프레임을 고흐 풍으로 모사하였음


Ø 가령 영화 속 고흐의 모습은 [그림 1]에서 보듯 고흐 역을 맡은 폴란드의 배우 로버트 굴락칙을 그린 유화로 표현되는데, 이 때 유화의 스타일은 고흐의 작품 자화상에 사용된 붓 터치 방식을 모방한 것임


ž 한편 영화의 제작이 한창이던 2015 9월 흥미롭게도 구글은 인공지능(AI)이 화가의 작품 스타일을 습득하고, 주어진 사진을 화가의 화풍을 따른 그림으로 변환하는 기술을 발표


Ø 영화 러빙 빈센트가 카메라로 촬영한 장면을 작가들이 고흐의 화풍을 모방하여 그린 것처럼, 구글은 인공지능을 대상으로 고흐의 스타일을 학습시킨 후 입력된 사진을 보고 이를 고흐 화풍의 유화로 변환하게 하는 기술을 개발한 것임


Ø 포스트 모더니즘의 대표적인 기법인 패스티쉬(Pastiche)는 패러디와 달리 비판하거나 풍자하려는 의도 없이 기존의 텍스트를 무작위적으로 모방하는 것을 말하는데, 영화 러빙 빈센트가 패스티쉬 기법으로 만들어진 것이라면, 구글은 인공지능 패스티쉬 기술을 개발했다 할 수 있음


Ø 구글은 회화를 패스티쉬 하는 심층 신경망(Deep Neural Network)의 연구개발 성과를 예술 스타일의 신경 알고리즘(A Neural Algorithm of Artistic Style)이라는 제목의 논문으로 발표하였음


Ø 발표 직후 이 짧은 논문은 개발자들은 물론 기술을 잘 모르는 일반인들에게도 관심을 불러 일으켰는데, 개발자 커뮤니티인 깃허브 등에서는 논문의 실효성 검증을 위한 프로젝트들이 만들어졌으며, 실험 결과 사진의 내용은 보존한 채 질감만 바꿔 출력할 수 있음이 검증되었음


ž 구글의 심층 신경망에 사진을 입력하면 여러 가지 스타일의 그림, 즉 유명 화가 여러 명의 화풍을 모방한 여러 장의 그림들로 변환해 줌


Ø [그림 2]에서 보듯 상단 왼쪽의 사진을 입력하면 윌리엄 터너의 The Shipwreck of the Minotaur(미노타우르스호의 난파)' 스타일, 반 고흐의 The Starry Night(별이 빛나는 밤) 스타일, 에드바르트 뭉크의 The Scream(비명) 스타일, 파블로 피카소의 Seated Nude(앉아있는 나부) 스타일, 바실리 칸딘스키의 Composition (구성 Ⅶ)’ 스타일의 그림으로 사진을 재구성함



<자료> A Neural Algorithm of Artistic Style


[그림 2] 사진을 5개 화풍을 따른 그림으로 변환


Ø 심층 신경망은 Convolutional Neural Network(CNN, 나선형 신경망, 이미지 인식 기능)을 사용하고 있는데, 하나의 신경망이 두 가지 기능을 가지고 있어 입력된 사진을 변환하는 동시에 화가의 작품 스타일을 학습함


Ø CNN은 각각의 레이어가 특징 량(feature)을 가진다고 보며, 이 특징 량들이 계층적(hierarchy)으로 쌓이면서 더 높은 레이어로 갈수록 더 좋은 특징 량을 만들어 낸다고 보기 때문에, 일반적으로 이미지 인식에서 월등한 성능을 낸다고 알려져 있음


Ø [그림 3]은 CNN에서 서로 다른 두 가지 방법으로 스타일과 콘텐츠를 레이어 별로 재구성 하는 것을 보여주는데, 위쪽은 고흐의 별이 빛나는 밤 스타일을 레이어 별로 재구성 한 것이고, 아래쪽은 튀빙겐에서 찍은 사진의 콘텐츠를 레이어 별로 재구성 한 것임


Ø 스타일 재구성에서 알 수 있는 것은 레이어가 얕을수록 원래 콘텐츠 정보는 거의 무시하고 질감(texture)을 복원하는 반면 깊은 레이어로 갈수록 점점 원래 콘텐츠 정보가 포함된다는 것으로, 현격한 특징 량을 추출하여 회화의 터치 등 화가의 스타일을 파악함


Ø 콘텐츠 구성을 보면, 낮은 레벨의 레이어는 거의 완벽하게 원본 이미지를 보존하고 있지만, 레이어가 깊어질수록 원본 이미지의 정보는 조금씩 소실되지만 가장 중요한 하이 레벨의 콘텐츠는 거의 유지가 되는 것을 볼 수 있음


Ø 논문은 이처럼 동일한 CNN이라 하더라도 콘텐츠와 스타일에 대한 재현이 분리가 되어 있다는 점을 중요하게 내세우고 있는데, 이를 통해 하나의 신경망을 이용해 서로 다른 이미지에서 서로 다른 콘텐츠와 스타일을 재구성하고 이 둘을 섞는 것이 가능한 것임


<자료> A Neural Algorithm of Artistic Style


[그림 3] 나선형 신경망(CNN)을 통한 스타일과 콘텐츠의 재구성 프로세스


ž 이후 구글은 CNN 기술을 보다 강화하여 새로운 논문을 추가로 발표하였는데, 이 논문은 이후 많은 스타트업들의 패스티쉬 앱 출시로 이어지게 되었음


Ø 구글이 기술을 강화해 발표한 후속 논문 A Learned Representation for Artistic Style(예술 스타일을 위한 학습된 재현)은 하나의 신경망으로 32 가지 스타일의 패스티쉬를 생성할 수 있는 프로세스를 소개하고 있음


Ø 또한 이 신경망은 입력된 이미지의 재구성을 실시간으로 실행하기 때문에 영상을 입력하면 재구성 된 영상이 출력되는데, 만일 러빙 빈센트 영화의 제작에 이 기술을 이용했다면 115명의 화가가 수만 장의 그림을 그릴 필요가 없었을 지도 모름


Ø 구글은 이 기술을 개발한 이유에 대해 새로운 예술의 문을 열기 위해서라고 밝히고 있으며, 화가의 스타일을 학습한 신경망은 스마트폰 앱으로 이용할 수 있을 것이라 말했음


Ø 실제로 이후 다수의 벤처기업들이 패스티쉬 앱을 출시하고 있는데, 그 중 가장 주목받은 앱은 프리즈마(Prisma)2016년 여름에 출시된 이후 5천만 다운로드를 기록하고 있음


Ø 프리즈마는 사진을 필터링 하거나 편집하는 앱과는 구조가 근본적으로 다른데, 구글의 CNN 기법을 사용하고 있어 AI가 사진을 분석한 후 학습된 유명 화가의 스타일로 재구성하며 사진을 회화의 예술로 다시 태어나게 함


Ø 사진을 입력한 후 원하는 회화 스타일을 선택하면 사진이 그림으로 변환되는데, 가령 몬드리안 스타일을 선택하면 사진이 가로 세로로 분할된 빨강, 파랑, 노랑의 삼원색으로 재구성됨



[그림 4프리즈마 앱의 몬드리안 스타일 변환


Ø 한편 최근 애플은 클립(Clips)이라는 자체 앱을 선보였는데, 이는 프리즈마 앱과 유사한 기능을 제공하기 위한 것으로 패스티쉬 앱의 인기가 일회성이 아님을 보여주는 반증이기도 함


ž 패스티쉬 앱은 새로운 예술 영역을 구축했다는 평가와 예술가들의 입지를 축소시킨다는 우려를 동시에 낳고 있는데, 예술 분야 역시 인간과 AI의 공존을 위한 모색이 필요할 전망


Ø 패스티쉬 앱의 보급과 함께 패스티쉬 팬도 크게 늘고 있는데, 인스타그램에는 프리즈마로 생성한 패스티쉬 작품이 다수 포스팅 되고 있음


Ø 아무 사진이나 변환한다고 해서 회화 예술이 되는 것이 아니지만 인스타그램에는 볼 만한 패스티쉬 작품이 다수 게재되어 예술의 새로운 영역을 구축하고 있다는 평가도 나오고 있으며, 매력적인 사진이 많은 인스타그램은 프리즈마로 회화의 즐거움이 더해져 더욱 풍부해지고 있음


Ø 반면, AI가 예술가의 일을 빼앗는 게 아니냐는 우려도 확산되고 있는데, AI가 동영상 패스티쉬도 생성할 수 있기 때문에 향후 러빙 빈센트 같은 애니메이션 영화가 추가로 제작된다면 예술가들이 불필요하게 될 것임을 지적하는 사람도 많음


Ø 이런 우려에 대해서는 예술가들이 패스티쉬를 제작하는 기계적 작업에서 해방되어 자신만의 창작 활동에 전념하게 될 것이라는 긍정적 반론도 있음


Ø AI는 반드시 모방할 원본을 필요로 하고 스스로 작품을 만들어내는 것은 아니기 때문에 복사의 범위를 벗어나지 못한다는 것이며, 결국 예술은 인간의 독창성에서 태어난다는 주장임


Ø 물론 이런 주장에 대해서는, 가령 알파고가 인간의 기보를 분석한 것이 아니라 알고리즘 스스로 만들어 낸 기보의 학습을 통해 인간 최고수를 꺾은 것처럼, 예술의 창작 역시 온전히 사람의 전유물이 아니며 AI도 얼마든지 창작 역량을 가질 수 있다는 재반론도 있음


Ø 이런 논란은 결국 회화 예술 분야 역시 인공지능과 인간의 협력, 또는 인간의 창작활동을 위한 AI의 지원 같이 인간과 AI이 공존을 위한 새로운 길의 모색이 필요할 것임을 시사


ž 예술가와 AI의 협업 모델 구축은 향후의 중요 과제로 남겠지만, 패스티쉬를 생성하는 AI를 이용한 새로운 비즈니스 창출 시도는 앞으로 활발히 전개될 예상됨


Ø 러빙 빈센트의 예에서 보듯 인간 예술가들이 수 년에 걸쳐 직접 패스티쉬를 만들기 보다 이를 AI에 맡겨 제작한다면 제작 시간을 단축 할 수 있게 되므로, AI는 우선 애니메이션 영화 제작 비즈니스에서 큰 잠재력을 가진 것으로 볼 수 있음


Ø 미야자키 하야오 같은 유명 애니메이션 아티스트의 스타일을 AI가 학습한다면, 아마 미야자키 하야오 감독의 은퇴 이후 인간이 아닌 AI가 감독의 영향을 가장 강하게 받은 후배로서 애니메이션 영화 제작을 주도할 수도 있을 것임


Ø 실제 프리즈마 앱은 이미 애니메이션 스타일로 변환하는 옵션도 제공하고 있어 이런 상상이 전혀 허황된 것은 아니며, 앞으로 애니메이션 창작 활동에서 인간과 AI가 담당해야 할 작업의 식별과 효과적 자원 배분은 영화 비즈니스의 핵심성공요소가 될 가능성이 높음


<자료> YouTube

[동영상] 프리즈마 앱의 애니메이션 생성 기능


Ø 영화 산업은 AI의 도입에 비교적 적극적인 산업의 하나로 이미 AI가 대본에 주도적으로 참여한 영화의 제작이 이루어지고 있으며, AI가 작곡한 음악을 영화의 배경음악(BGM)으로 사용하는 방안이 논의되고 있기 때문에 향후 적극적인 인간-AI의 협업 모델이 모색될 것으로 전망