※ 아래 글은 정보통신기술진흥센터(IITP)가 발간하는 주간기술동향 1841호(2018. 4. 11. 발행)에 기고한 원고입니다.


▶ IITP에서 PDF 포맷으로 퍼블리싱한 파일을 첨부합니다. 가독성이 좋으니 참고하시기 바랍니다.

우버 자율운전차 사망 사고, 도심 주행 허가 기준 강화될 듯.pdf



[ 요 약 ]


자율주행 자동차의 시가지 주행 테스트 과정에서 처음으로 인명 사고가 발생하면서 자율운전 기술의 안전성에 대한 의문이 제기되고 있음사고의 원인이 센서 결함인지자율운전 알고리즘의 문제인지 아직 조사가 진행 중이지만원인 규명 때까지 주행 테스트는 당분간 중단될 것으로 보임자율주행 상용화를 위해 시가지 주행은 반드시 필요한 만큼 테스트가 완전 중단되지는 않겠지만개발업체들의 기술 수준에 따라 허용 기준이 설정되는 등의 변화가 예상됨



[ 본 문 ] 


ž 우버(Uber)의 자율운전 차량이 일으킨 사고의 원인은 아직 조사 중이지만, 자율운전차에 의한 첫 보행자 사망 사고라는 점에서 상당한 파장을 일으키고 있음


Ø 사망 사고는 2018 318 , 애리조나주 피닉스 교외인 템피(Tempe)에서 일어났는데 우버의 자율운전 시험 차량(Volvo XC90 SUV 베이스)이 시속 40 마일로 주행하던 중 길을 건너고 있던 여성을 치면서 발생하였음


Ø 이 여성은 자전거를 끌고 도로의 왼쪽에서 오른쪽으로 건너 가고 있었는데, 맨 끝차선을 달리고 있던 자동차는 감속하지 않고 직진을 계속해 여성을 사망시켰음


<자료> New York Times


[그림 1] 우버 자율주행차 인명 사고 상황


Ø 자동차에는 운전자가 탑승하고 있었지만, 차량 내부 촬영 영상을 보면 사고 당시 전방을 주시하고 있지 않았기 때문에 위험 회피 조치를 할 수 없었음


Ø 자율운전 차량과 관련된 사고는 몇 차례 있었지만 인명 사고가 난 것은 이번이 두 번째이며, 보행자가 사망한 것은 처음임


Ø 지난 2016년 테슬라 차량이 트럭과 충돌하며 운전자가 사망할 당시 테슬라의 오토파일럿(Auto Pilot) 기능이 핸들과 페달 제어를 지원하는 레벨 2 정도였다면, 이번 사고 차량은 목적지를 설정하면 스스로 주행하는 레벨 4 단계였기 때문에 사고의 여파가 더 크게 나타나고 있음


Ø 사고 직후 애리조나를 비롯 다른 주에서도 사고의 원인이 정확히 밝혀지기 전까지 자율운전 도로 주행 테스트를 잠정 중단시켰으며, 현재 국가교통안전위원회(National Transportation Safety Board, NTSB)가 사고 원인 조사를 진행하고 있음


ž 사고 발생 시각은 밤 10시 경이기 때문에 사고 원인 분석은 우선 보행자 인식 실패가 센서의 결함인지 시스템의 결함인지를 규명하는 데 초점을 맞추고 있을 것으로 추정됨


Ø 우버의 자율운전 자동차는 여러 센서를 탑재하여 자동차 주위의 객체를 인식하는데, 지붕 위에는 하나의 라이더(Lidar, 레이저 센서) 7 대의 카메라를 탑재하고 있으며, 또한 레이더도 설치하여 차량 주위 360도를 모니터 하고 있음


Ø 사고가 야간 주행 중에 일어나긴 했지만, 기술적으로는 주변이 어두워도 라이더를 통해 객체를 인식할 수 있고, 보행자 정도의 객체 크기라면 확실하게 감지 할 수 있다는 것이, 우버 차량에 탑재된 라이더를 제작한 벨로다인(Velodyne)의 입장임


<자료> Velodyne


[그림 2] 벨로다인 라이더의 주변 객체 인식


Ø 벨로다인의 입장 발표에 따르면 차량에 사용된 라이더 HDL-64E 모델은 사고 당시와 같은 상황 조건에서 보행자와 자전거를 확실히 구분할 수 있다고 주장하였음


Ø 아울러 라이더의 역할은 객체의 감지이며 회피 조치를 취할 판단은 시스템이 하는 것이라고 덧붙이며, 우버의 자율운전 소프트웨어에 문제가 있을 것이라는 견해를 밝혔음


Ø 벨로다인의 주장에 대해서는, 자율운전 차량이 사고 당시 속도를 줄이거나 회피하려는 동작을 전혀 취하지 않은 것을 보면 인식이 안된 것으로 보아야 한다는 반론이 있음


ž 로이터 통신은 전문가 취재를 통해, 라이더의 기술적 결함은 아니지만 우버가 라이더의 개수를 줄임에 따라 사각지대가 발생했을 가능성에 무게를 두고 보도하였음


Ø 우버의 자율주행 테스트 차량은 원래 포드의 퓨전 세단으로 라이더 7, 레이더 7, 카메라 20대가 장착돼 있었음


Ø 우버는 지난 2016년에 베이스 차량을 볼보 XC90 SUV로 변경하면서, 레이더는 10개로 늘렸지만 라이더는 1, 카메라는 7대로 줄인 바 있음


<자료> Reuter


[그림 3] 우버 자율주행차의 센서 구성 변경


Ø 차량 주변을 탐지하는 라이더는 센싱 능력이 우수하나 부품 가격이 매우 높고, 벨로다인이 거의 독점 공급하고 있어 자율운전 차량의 가격이 낮아질 수 없는 원인으로 꼽히고 있기 때문에 우버의 변경 조치는 비용절감이 목적이었을 것임


Ø 그러나 로이터 통신에 따르면 벨로다인의 라이더는 360도를 모니터 할 수 있지만 수직 감지 범위가 좁아 낮은 곳에 위치한 물체를 감지하기 어려운 단점이 있고, 따라서 지붕에 1대만 설치할 경우 차량 주위 약 3미터의 사각지대가 발생할 수 있다고 함


Ø 사각지대 가능성에 대해서는 벨로다인 관계자도 인정했고 그렇기 때문에 다수의 라이더가 필요하다는 설명도 덧붙였다고 하는데, 웨이모가 차량에 6대의 라이더를 장착한 것에 비하면 우버가 라이더를 1개로 줄인 것은 센싱 관점에서 중대한 결함이라고 로이터는 지적


ž 그러나 자율주행차의 센서가 라이더만 있는 것은 아니기 때문에, 어떻게든 보행자는 인식했을 것이라 보는 것이 대체적인 견해임


Ø 우버는 지붕에 7대의 카메라를 탑재하고 있는데, 전방을 담당하는 카메라는 근거리와 원거리를 모두 커버하며, 앞쪽에 있는 다른 자동차가 감속하는 것을 파악하는 동시에 보행자를 인식하고 또한 신호등과 도로 표지판을 읽는 데도 사용됨


Ø 사고 직후 뉴스 보도에 따르면 사고 장소는 야간이지만 가로등이 설치되어 있어 일정한 밝기임을 알 수 있고, 카메라의 성능은 정확히 공개되어 있지 않지만 다이내믹 레인지가 넓어 사고 여성을 파악했을 가능성이 높음


Ø 자율운전 제어 ​​카메라와는 별도로 대시보드에 모니터용 카메라도 구비되어 있어 전방과 차량 내부를 촬영하게 되는데, 템피시 경찰이 공개한 대시보드 카메라 영상을 보면 보행자가 도로 왼쪽에서 오른쪽으로 건너고 있는 것이 정확히 포착되어 있음



Ø 영상을 보면 카메라가 보행자를 인식했음에도 또한 자동차는 감속하지 않고 그대로 직진 한 것도 확인할 수 있으며, 또한 위험 시 개입해야 할 운전자가 전방을 주시하지 않고 있다가 사고 소리에 상황을 알아 차리고 놀라는 장면도 확인할 수 있음


<자료> ABC News


[그림 4] 테스터 운전자의 전방 주시 태만


Ø 한편 우버 차량에는 라이더와 카메라 외에 주위 360도를 모니터 하는 레이더도 탑재되어 있는데, 레이더는 주행 중인 자동차나 정차하고 있는 자동차 등을 인식하며 도플러 효과를 이용하여 객체의 이동 속도를 파악하는 역할을 함


Ø 일반적으로 레이더의 해상도가 낮고 핀 포인트에서 객체의 위치를 ​​특정 할 수 없기 때문에 레이더 단독으로만 센싱하지는 않으며, 또한 레이더가 보행자를 인식해도 알고리즘은 이 정보만으로 브레이크를 걸도록 프로그램 되어 있지는 않음


Ø 따라서 사고 당시 차량이 속도를 줄이거나 정지하지 않았다고 해서 레이더가 보행자를 인식하지 데 실패했다고 볼 수는 없다는 것이 전문가들의 견해임


ž 종합적으로 볼 때, 우버의 센서가 보행자를 인식했을 가능성은 높은데 그럼에도 불구하고 차량이 회피 조치를 취하지 않았는지가 원인 규명의 핵심이 될 것으로 보임


Ø 현재 사고 원인 조사를 하고 있는 국가교통안전위원회(NTSB)는 주로 항공기 사고를 담당하나 교통 사고 중 사안이 중대할 경우 맡기도 하는데, 자율운전 자동차 사고처럼 자동차의 소프트웨어 분석이 요구되는 고도의 사안인 경우도 NTSB가 원인을 규명함


Ø NTSB에 의한 조사의 최종 결론이 나오려면 시간이 좀 더 걸리겠지만, 우버의 자율운전 시스템에 심각한 문제가 있다는 말들이 언론을 통해 흘러 나오고 있음


Ø 뉴욕타임스에 따르면 우버 차량의 Disengagement(디스인게이지먼트, 자율운전 기능 해제 조치)의 빈도는 13 마일당 1번이라고 하는데, 디스인게이지먼트는 차량에 문제가 발생하여 테스터 드라이버가 자율운전 모드를 해제시키는 조치를 의미함


Ø , 디스인게이지먼트가 실행되었다는 것은 자율운전 자동차가 비정상 상태에 있음을 의미하며 결함 발생 건수로도 해석할 수 있는데, 우버 차량의 경우 이것이 13 마일마다 발생했다는 것이므로 시스템이 아직 불완전한 상태에 있다고 추정할 수 있음


Ø 자율운전 차량의 도로 주행 테스트가 주로 이루어지는 캘리포니아주의 교통당국은 매년 각 기업의 테스트 결과를 취합해 자율운전 차량 디스인게이지먼트 보고서를 공표하는데, 우버의 경우 2017년 보고서에 등재되어 있지 않아 정확한 기술 수준 추정이 어려웠음


Ø 이번 뉴욕타임스의 보도로 우버의 디스인게이지먼트 빈도가 알려진 것인데, 13 마일당 1회 발생했다는 결과는, 5,600 마일당 1회가 발생한 웨이모(Waymo) 1,250마일당 1회가 발생한 GM과 비교해 볼 때 기술 완성도 면에서 큰 격차가 있는 것임


[1] 2016.12~2017.11 캘리포니아 주 내 자율운전 테스트 기업의 디스인게이지먼트 비교

기업명

디스인게이지먼트() [A]

주행거리(마일) [B]

[B] / [A]

Waymo

63

352,544.6

5,596

GM Cruise

105

131,675.9

1,254

Drive.ai

93

6,127.6

255

Baidu

42

1,949.14

217

Nissan

24

5,007

207

Zoox

14

2,244

160

Telenav

50

1,581

32

Delphi Automotive

81

1,810.6

22

우버

N/A

N/A

13

NVIDIA

109

505

5

BMW

598

1,595

3

Valeo North America

215

574.1

3

Mercedes Benz

773

1,087.7

1

<자료> Department of Motor Vehicles, State of California, 우버의 기록은 New York Times 보도


ž 우버 자율운전 시스템의 기술 결함으로 초점이 맞춰지는 가운데, 이것이 우버 만의 문제인지, 자율운전 알고리즘에 내재한 본질적인 문제인지에 대한 논의도 이루어지고 있음


Ø 사고 시간이 야간이었고, 사고 지역이 횡단보도가 아닌 구역이었기 때문에, 자율주행 차량이 보행자 주의가 필요하지 않다고 인식했을 가능성이 있다는 분석도 있음


Ø 워싱턴 포스트는 로보틱스 전문가인 듀크 대학의 미시 커밍스 교수의 말을 빌려, 자율주행차량의 컴퓨터 시스템이 보행자, 특히 횡단보도 바깥의 보행자까지 인식하는 것은 아니라는 점을 지적하였음


Ø 자율운전 차량은 인식-판단-제어의 순서로 작동하는데, 센서가 비록 무언가 객체를 인식했다 하더라도, 한밤 중에 횡단보도가 아닌 곳에서 자전거를 끌고 가는 사람이었던 만큼 보행자로 구별하지 못했을 가능성이 있다는 것임


Ø 커밍스 교수는 자율주행 시스템은 귀납적 추론을 할 수 없으므로, 특정 장소, 특정 시간대의 어떤 모습을 추측할 수 없다고 설명하며, 자율주행 차량이 도로의 복잡한 변수를 파악하지 못하기 때문에 사고가 날 위험이 높다는 점을 지적하고 있음


Ø CNN 역시 자율주행차가 보행자와 자전거를 끌고 있는 사람을 구분하는 것은 어려운 작업이라며, 자율주행차의 성능이 고속도로처럼 신호가 없고 상황이 단순한 곳에서는 완전해 보이지만, 시내주행 테스트는 조심스럽게 접근할 수밖에 없다고 보도하였음


Ø 그러나 이런 지적에 대해서는, 자율운전 시스템은 보행자나 다른 차량들이 교통법규를 정확히 준수했을 때만 작동할 수 있다고 말하는 잘못된 주장이라는 반론도 있음


Ø 웨이모와 GM뿐 아니라 사고를 낸 우버를 포함해 자율운전차 개발업체들은 사고 위험을 줄이기 위해 가상주행, 시험주행 등으로 주행 데이터를 수집하고 보행자의 무단 횡단 등 최대한 많은 교통 변수를 파악하기 위해 노력하고 있다는 것임


Ø 또한 사고 영상을 보면 속도를 줄이거나 차선을 바꾸려는 시도가 전혀 없었는데, 시스템이 비록 보행자인지 아닌지 구분할 수 없었을 수는 있으나, 앞쪽에 무언가 있는데 정확히 무엇인지 모를 경우 계속 직진하라고 알고리즘을 설계하지는 않았을 것이란 반박임


Ø , 이번 사고의 원인은 센서에서 제대로 인식을 하지 못했거나, 만일 인식을 제대로 했다면 알고리즘 설계의 잘못이라기 보다는 단순히 소프트웨어가 순간적으로 작동을 하지 않았을 것으로 보는 것이 합리적이라는 것임


ž 이런 면에서 볼 때, 이번 우버 차량의 인명 사고는 각 개발업체의 자율주행 시스템 알고리즘이 어떤 기준으로 설계되어 있는지 공개하도록 요구하는 계기가 될 수도 있음


Ø 만일 우버 차량의 사고가 센서 미인식이나 소프트웨어의 작동 오류가 아니라 알고리즘에 의한 것이라면, 가령 가능성은 낮지만, 횡단보도가 아닌 구역에서는 보행자 주의가 필요하지 않다는 식으로 프로그래밍이 되어 있는 것이라면 이는 심각한 문제가 될 수 있음


Ø 우버의 경우 작년 3월에 자율주행 차량이 전복되는 사고가 있었는데, 당시 신호가 노란색으로 변하는 순간 교차로에 들어선 차량이 가속했다는 증언이 나오면서, 노란색 신호에서는 속도를 올려 통과하라고 프로그래밍 돼 있을 가능성이 있다는 보도가 나온 바 있음


Ø 교통 법규에서 교차로 진입 시 노란색으로 불이 바뀌면 빠르게 통과하라고 되어 있기 때문에 우버의 알고리즘이 그렇게 프로그래밍 되어 있다고 해서 비판할 수는 없을 것임


Ø 그러나 교차로는 매우 복잡한 상황이 벌어지는 곳이기 때문에, 현재 기술 수준에서 노란색 신호로 바뀌는 순간 무조건 가속해서 통과하라고 프로그래밍 하는 것이 적절한 지에 대해서는 사회적 논의가 필요하며 각 기업의 판단에만 맡길 수 없다는 지적도 있음


Ø 이는 비단 우버 만의 문제는 아니며 자율운전차를 개발하는 모든 기업에 해당하는 것으로 각 기업이 어떤 기준으로 알고리즘을 프로그래밍 하는지 밝혀야 한다는 목소리가 높지만, 교통사고시 책임 소재 등의 이슈와 맞물려 있어 완전히 공개되지 않고 있는 상황임


Ø 자율운전차에 대한 논의에서 빠지지 않는 트롤리 딜레마, 즉 타인의 생명과 자신의 생명 중 하나를 선택해야 할 때 자율운전차가 어떤 선택을 하도록 프로그래밍 할 것인지, 혹은 알고리즘을 교육할 것인지는 쉽사리 합의에 이르기 어려운 난제임


<자료> Sean Lee


[그림 5] 트롤리 딜레마


Ø 트롤리 딜레마의 경우 현재는 차량 제조사마다 다른 윤리적 지침을 제시하고 있는데, 웨이모의 경우 어떤 선택이 더 나은 것인지 판단할 수 없지만 약자로 판단되는 보행자에 초점을 맞추고 있다는 입장임


Ø 반면 메르세데스 벤츠는 차 안의 사람을 보호할 것이라는 입장을 밝히고 있으며, 독일연방교통부의 경우는 사고를 피할 수 없는 상황에서 자율주행차가 어떤 선택을 해야 하는 것인지 결정할 수 없다고 입장임


Ø 자율주행차의 테스트 장소가 교통 흐름이 단순한 고속도로에서 이제 보다 복잡한 시내 주행으로 옮겨오고 있는 중이기 때문에, 어쩌면 자율주행차에 의한 사고는 계속 발생할 수 있을 텐데, 그 과정에서 알고리즘에 대한 공개 요구 역시 보다 거세질 수 있을 것임


ž 자율주행차의 상용화에 대한 기대가 높아지고 있는 상황에서 발생한 이번 인명 사고는 자율주행 기술의 신뢰도에 대해 다시 한번 되짚어 보는 계기가 되고 있음


Ø 자율주행차의 시가지 주행 테스트에 관대한 애리조나주에서도, 이번 사고 직후 우버의 시험 주행 중지 명령을 내렸음


Ø 애리조나 주지사는 사고의 원인이 확실히 우버 측에 있다고 말함으로써 엄격한 입장을 취해 나갈 것임을 시사하였으며, 우버가 앞으로 애리조나에서는 자율주행 테스트를 재개할 수 없다는 말도 나돌고 있음


Ø 이는 비단 우버에 한정한 이야기는 아니며, 애리조나뿐만 아니라 다른 주에서도 향후 자율운전에 대한 규제, 특히 시가지 주행에 대한 규제는 엄격해질 것으로 전망되고 있음


Ø 사고 직후 자율주행 기술 개발업체 스스로 테스트에 신중한 입장을 보이기도 하는데, 엔비디아의 경우 안전이 보장될 때까지 자율주행 시험을 중단한다고 발표하였음


Ø 엔비디아는 사고 직후 우버 차량이 엔비디아의 자율주행 기술을 적용하고 있었다는 보도가 나오며 곤경에 처하기도 했으나, 엔비디아의 젠슨 황CEO는 우버와 협력하고 있는 것은 사실이나 우버가 독자적인 인식 및 제어기술을 개발 중이었다고 해명한 바 있음


Ø 공교롭게 엔비디아는 사고 후 열흘 만에 개최된 자사 개발자 컨퍼런스 GPU Technology Conference(GTC) 2018를 맞이하게 됐는데, 적극적으로 자신들의 자율운전 기술 홍보에 나설 수 없는 상황이 되었음




Ø GTC 2018에서 스웨덴의 스타트업 아인라이드 트럭(Einride Truck)은 올해 가을 무인 트럭 T-pod(T-)을 상용화한다고 발표했는데, T-팟은 미국 자동차기술협회가 정한 레벨5의 최고 수준 자율운전을 지향함



Ø T-팟은 고속도로에서는 레벨5로 주행하지만 비상시에는 담당자가 원격으로 조작하며, 일반 도로에 들어서면 항상 무선 통신을 통해 원격으로 조작하게 되는데, 레벨4~5의 차량 개발을 위한 엔비디아의 드라이브 PX(Drive PX) 인공지능 시스템을 채택하고 있음


Ø T-팟을 비롯해 엔비디아는 GTC 2018 행사에서 자율운전 기술에 대해 자신감을 내비치기도 했지만, 이번 우버 사고와 연루설도 있고 자율운전에 대한 부정적 여론이 커진 상태이므로 당분간 도로 주행 테스트를 자제하며 기술을 점검하겠다는 입장을 표명한 것


ž 전문가들은 이번 사고로 자율주행차 개발이 중단되지는 않겠지만, 현재의 개발 관행에 큰 변화를 가져올 것이며, 기술력의 차이에 따라 지원이 차등화될 가능성을 점치고 있음


Ø 이번 사망 사고로 인해 자율주행차량은 아직 복잡한 변수에 취약하다는 점이 드러난 셈이라는 지적이 있긴 하지만, 미국 현지에서는 그럼에도 자율주행 시험 주행을 계속 이어가야 한다는 주장이 훨씬 많은 편임


Ø 자율주행차가 이상 상황에 대비한 메커니즘이 있긴 하지만 더 많은 변수를 감안해 판단하기 위해서는 결국 더 많은 테스트를 할 수 밖에 없으며, 시뮬레이션 주행을 통한 알고리즘 교육도 강화해야 하지만 도로 위 시험 주행의 지속이 중요하다는 것임


Ø , 현실적으로 자율주행 개발업체들 사이에 기술 격차가 있다는 것이 수치로 확인되고 있느니만큼, 도로 주행 허가를 위한 기준을 설정할 필요가 있다는 주장이 힘을 얻고 있으며, 이와 맞물려 개발업체들의 도덕성에 대한 문제 제기도 이루어지고 있음


Ø 인터넷 상에는 우버의 자율운전 자동차가 시가지를 경쾌하게 주행하고 있는 비디오가 많이 있으며 이는 기술이 완성된 것처럼 보이게 하는데, 이번 사고를 통해 실제 우버의 시스템은 미완성이고 시가지를 달리기에는 위험성이 높다는 평가와 증언들이 나오고 있음


Ø 우버는 자율주행차량의 시험 주행을 위해 약 5만평에 이르는 가상도시 알모노(Almono)를 만들었다고 알려지는 등 외부적으로 기술 개발 수준이 높다는 인상을 주고 있으나, 디스인게이지먼트가 13마일당 1회라는 사실은 매우 어려움을 겪고 있음을 방증함


Ø 우버의 테스터들도 이전에 유사한 상황이 많았음을 증언함에 따라 우버가 이런 기술 수준으로 시내 주행 테스트를 실행에 옮긴 데 대한 비난의 목소리도 커지고 있음


Ø 또한 자율운전 기술의 완성도를 너무 신뢰한 나머지 전방 주시 의무를 게을리 할 만한 상황이 전혀 아니었음에도 한눈을 판 테스터와, 테스터들에 대한 교육을 철저히 하지 않은 우버에 책임을 묻는 사람들도 많음


Ø 우버는 향후 자율운전 기술 개발과 테스트를 어떤 식으로 전개할 것인지에 대한 질문을 받고 있는데, 이는 우버뿐 아니라 다른 기술 개발업체에도 해당되는 것이며, 개발업체들의 답변과 상관없이 교통당국이 나름의 허가 기준을 정할 가능성이 매우 높아지고 있음

※ 아래 글은 정보통신기술진흥센터(IITP)가 발간하는 주간기술동향 1835호(2018. 2. 28. 발행)에 기고한 원고입니다.


▶ IITP에서 PDF 포맷으로 퍼블리싱한 파일을 첨부합니다. 가독성이 좋으니 참고하시기 바랍니다.

2017년 자율운전 도로 주행 테스트 결과, 기술력 1위는 웨이모.pdf



ž 캘리포니아 교통당국의 발표 결과, 자율운전 자동차의 기술력은 구글의 자회사 웨이모(Waymo)가 글로벌 자동차 대기업과 스타트업을 ​​아직 크게 앞서고 있는 것으로 나타남


Ø 캘리포니아 주는 자율운전 도로주행 테스트를 허용하고 있는 몇 안 되는 곳으로 교통당국은 주 내 도로에서 자율운전 차량을 테스트하는 기업에 대해 그 해의 시험 결과를 보고하도록 의무화하고 있음


Ø 각 사가 보고한 테스트 결과를 취합해 캘리포니아주 교통당국이 공개한 보고서(Autonomous Vehicle Disengagement Reports 2017)에 따르면, 자율운전 도로주행 거리와 AI의 운전 제어 중지 빈도 측면에서 웨이모가 모두 타사에 비해 크게 앞선 것으로 나타남


Autonomous Vehicle Disengagement Reports 2017 (20개사의 보고서를 볼 수 있는 사이트)


Ø 우선 도로주행 테스트 거리를 보면, 웨이모는 2017년에 총 75대의 자율운전 차량을 테스트했으며, 주행거리는 총 35 2,545 마일( 56만 킬로미터)이었음


Ø 웨이모의 테스트 주행거리는 2016 63 5,868 마일에 비해 절반 가량 줄어든 수치임에도 불구하고, 2017년 시험 주행거리 2위를 차지한 GM에 비해 2.7배 가량 높은 것임


Ø 자율운전 기술력과 관련해 주행거리 보다 주목해야 할 것은 AI(인공지능)이 제어 능력을 잃어 사람에게 운전 권한을 넘기는 분리(Disengagement)의 발생 횟수인데, 웨이모 자율운전 차량은 2017년에 35 2,545 마일을 달리는 사이에 63회의 분리가 발생하였음


Ø 즉 웨이모의 자율운전 AI는 현재 5,596 마일( 9,000 킬로미터) 주행 당 한 번 꼴로 판단 불능 상태에 봉착하고 있는 셈


Ø 웨이모의 과거 분리 횟수 당 주행거리를 보면, 2015년에 1,200 마일( 2,000 킬로미터) 1, 2016년에는 5,000 마일( 8,000 킬로미터) 1회였으므로, 웨이모의 자율운전 AI 성능은 꾸준히 향상되고 있음을 알 수 있음


[1] 2016.12~2017.11 캘리포니아 주 내 자율운전 테스트 기업의 AI 분리 횟수 당 주행거리

기업명

분리 횟수

주행거리(마일)

분리 1회당 주행거리(마일)

Waymo

63

352,544.6

5,596

GM Cruise

105

131,675.9

1,254

Drive.ai

93

6,127.6

255

Baidu

42

1,949.14

217

Nissan

24

5,007

207

Zoox

14

2,244

160

Telenav

50

1,581

32

Delphi Automotive

81

1,810.6

22

NVIDIA

109

505

5

BMW

598

1,595

3

Valeo North America

215

574.1

3

Mercedes Benz

773

1,087.7

1

<자료> Department of Motor Vehicles, State of California


ž 웨이모를 뒤쫓고 있는 곳은 제너럴 모터스(GM)의 자회사인 GM 크루즈(GM Cruise) 2017년에 도로 주행 테스트 거리를 전년도에 비해 10배 이상 늘렸음


Ø GM 크루즈의 AI가 사람에게 권한을 넘기는 빈도는 1,254 마일 당 1회였는데, 이는 웨이모의 2015년 수준인 1,200 마일 당 1회를 따라잡은 것임


Ø 또한 GM 크루즈의 2016년 분리 1회 당 주행거리가 54 마일이었음을 감안하면, GM 1년 사이에 자율운전 AI의 성능을 비약적으로 높였음을 유추할 수 있음


Ø GM 크루즈의 테스트에서 흥미로운 점은 자율운전 차량의 도로 주행을 샌프란시스코에서만 실시하고 있다는 것인데, 이는 웨이모가 샌프란시스코의 교외 지역인 마운틴 뷰에서 도로 테스트를 실시하고 있는 것과 대비되는 부분


Ø 샌프란시스코는 교통량이 많고 도로가 복잡하기 때문에 사람도 운전하기가 쉽지 않은 지역인데, GM 크루즈는 운행 조건이 더 나쁜 환경에서 테스트를 함으로써 웨이모의 기술력을 단기간에 따라 잡으려 하는 것으로 보임


Ø 이와 유사한 전략을 펴고 있는 곳이 샌프란시스코에 본사를 둔 스타트업 즈욱스(Zoox)인데, GM 크루즈와 마찬가지로 샌프란시스코에서만 주행 테스트를 실시하고 있다고 함


ž 캘리포니아 교통당국의 보고서를 보면 자율운전 차량들 사이에 성능의 차이가 크다는 사실을 알 수 있는데, 가장 차이가 두드러지는 것이 사람에게 권한을 넘기는 횟수임


Ø 웨이모의 자율운전 자동차가 5,596 마일 당 1회만 AI가 사람에게 권한을 인계하는 반면 메르세데스 벤츠와 BMW의 자율운전 자동차는 1~3 마일 당 1회 꼴로 AI로부터 사람으로 인계가 발생하고 있음


Ø AI용 반도체와 자율운전 소프트웨어를 조합한 자율운전 플랫폼 제공을 목표로 하고 있는 엔비디아의 시험 성적도 아직은 불안한 수준인데, 505 마일을 주행하는 동안 109회 분리가 발생하여 5 마일 당 1회 꼴로 분리가 발생하고 있음


Ø 엔비디아는 자율운전 플랫폼을 사용해 누구나 자율운전 자동차를 구현할 수 있게 함으로써 자율운전 기술의 일상용품화(Commodity)를 실현하겠다는 포부를 밝히고 있으나, 이 목표가 실현되기까지는 아직 시간이 더 필요할 것으로 보임


ž 캘리포니아 교통당국의 보고서는 자율운전 자동차의 기술 수준을 가늠하는데 매우 유용한 자료이지만, 이런 정보를 취합할 수 있는 것은 2017년이 마지막이 될 것으로 보임


Ø 가장 중요한 기술 개발 업체인 웨이모는 무인택시 시범 서비스의 허가 문제로 캘리포니아 당국과 합의에 이르지 못해 작년 말부터 애리조나로 완전 무인 자율운전 자동차의 도로 주행 테스트를 실시하고 있으며, 올해 캘리포니아에서 도로 주행 여부는 불투명함


Ø 웨이모의 캘리포니아 내 도로 주행 거리가 2016년에 비해 절반 가량으로 줄어든 데에는 이런 배경이 작용한 것인데, 웨이모는 2017년부터 애리조나 외에 워싱턴과 텍사스 주에서도 자율운전 도로 주행 테스트를 실시하고 있음


Ø 웨이모는 2017 12월 현재 자율운전 도로 주행 테스트가 총400만 마일( 645만 킬로미터)이 넘었다고 발표한 바 있는데, 이는 캘리포니아 지역 이외의 도로 테스트도 상당한 거리에 달했음을 시사하는 것임


Ø 포드 자동차 역시 2017년에 자율운전 차량 테스트 지역을 캘리포니아에서 미시간 주로 옮겼는데, 2016년에 캘리포니아에서 590 마일의 도로 테스트를 실시했던 포드였지만 2017년에는 전혀 실시하지 않았음


Ø 따라서 각 사의 자율운전 기술의 성능 차이가 어느 정도인지를 간접적으로나마 비교하려면 2018년에는 기존과 다른 데이터를 사용할 필요가 있을 것임


ž 한편 시장조사기관 내비건트 리서치(Navigant Research)는 자체 분석 툴을 이용해 평가한 결과 GM을 자율주행 종합 기술력 1, 웨이모를 2위로 발표하였음


Ø 내비건트 리서치는 자율운전 시스템을 개발하고 있는 19개 기업을 비전, 시장출시 전략, 파트너, 생산 전략, 기술, 판매 및 유통, 제품 성능, 제품 품질과 신뢰성, 제품 포트폴리오, 유지력 10개 기준으로 평가하였음


<자료> Navigant Research


[그림 1] 자율운전 기술 기업들의 순위표


Ø 그 다음 자체 순위표(leaderboard) 방법론을 이용하여 19개 기업을 선도자(leader)-경쟁자(contender)-도전자(challenger)-추종자(follower) 4개 그룹으로 분류하였음


Ø 선도자 그룹에는 GM, 웨이모, 다임러-보쉬, 포드, 폴크스바겐, BMW-인텔-FCA(피아트 크라이슬러 연합), 앱티브(Aptive, 델파이의 자회사) 7개 기업 및 연합이 포함되었음


Ø 내비건트 리서치 보고서에서 웨이모가 2위로 평가된 것은 자동차 기업이 아니기 때문에 생산 능력에서 GM에 밀렸기 때문이며, 자율주행 기술력 부문만 본다면 캘리포니아 교통당국의 보고서와 마찬가지로 단연 최고 수준으로 평가 받았음


Ø 내비건트 리서치는 2020년경에 제한적 범위지만 주행과 가속 및 제동에는 사람이 신경 쓸 필요가 없을 정도의 자율주행차가 등장할 것으로 전망하는데, 글로벌 완성차 제조업체들이 대부분 이때를 기점으로 자율주행차 양산을 목표로 하고 있기 때문임


ž GM은 자율주행 개발 경쟁에 비교적 뒤늦게 뛰어들었지만 과감한 투자와 빠른 양산화 전략을 추진하면서 작년 평가에서 4위를 기록했으나 이번에 1위로 평가되었음


Ø GM2016년 차량 공유 서비스 업체 리프트(Lyft) 5억 달러를 투자한 바 있고, 자율주행 솔루션 개발 스타트업인 크루즈 오토메이션(Cruise Automation)10억 달러에 인수하는 등 과감한 투자 행보를 보인 바 있음



Ø 2017년에도 레이저 레이더(LiDAR) 기술을 보유한 스타트업 스트로브(Strobe)를 인수했으며, 2018년 들어서자마자 크루즈 오토메이션과 함께 4세대 자율주행차 크루즈 AV(Autonomous Vehicle)를 공개하였음


<자료> TechCrunch


[그림 2] 운전대 없는 GM의 크루즈 AV


Ø 크루즈 AV는 운전대가 없기 때문에 운전석과 조수석의 구분이 없고 브레이크나 액셀러레이터 페달이 아예 없는데, 댄 암만 GM 사장은 2019년에 크루즈 AV가 도로 주행을 할 수 있도록 미 교통 당국에 허가를 신청한 상태라고 밝혔음


ž 테슬라는 몇 년 전까지만 해도 내비건트 리서치의 평가에서 상위권에 올랐지만, 이후 가시적인 기술 발전 전략을 보여주지 못해 이번 조사에서는 최하위로 평가되었음


Ø 내비건트 리서치는 테슬라가 궂은 날씨나 대기가 흐린 환경에서도 카메라와 센서가 이상 없이 작동할 수 있게 해주는 기술이 없기 때문에 사람이 개입하지 않는 완전한 자율주행차를 만들기는 당분간 어렵다고 평가하고 있음


Ø 2016년 테슬라는 자율주행 소프트웨어인 오토파일럿(Auto Pilot) 탑재 차량의 운전자가 사고로 사망하자 자율주행 핵심 기술 제공업체인 모빌아이(Mobileye)와 결별했는데, 이후 기술 개발이 정체되고 있다는 평가가 나오고 있음


Ø 내비건트 리서치는 테슬라가 자율주행차 분야에 높은 비전을 가지고 있지만 그 비전을 지속적으로 실행할 수 있는 능력을 지속적으로 입증하지 못하고 있다며 새로운 전기가 필요할 것으로 분석하고 있음


Ø 한편, 테슬라와 결별한 모빌아이는 2017 3월 인텔이 153억 달러에 인수한 바 있으며, 인텔은 모빌아이 인수를 통해 자율주행 기술 분야에서 새로운 다크호스로 급부상하였음