※ 아래 글은 정보통신기술진흥센터(IITP)가 발간하는 주간기술동향 1836호(2018. 3. 7. 발행)에 기고한 원고입니다.


▶ IITP에서 PDF 포맷으로 퍼블리싱한 파일을 첨부합니다. 가독성이 좋으니 참고하시기 바랍니다.

구글 자율운전차의 강력한 대항마로 부상한 GM의 ‘크루즈 AV’.pdf



[ 요 약 ]


제너럴 모터스(GM)는 2019년 양산을 목표로 완전 자율주행 자동차 크루즈 AV(Cruise AV)의 개발과 테스트에 박차를 가하고 있음크루즈 AV는 자율주행차 기술을 선도하고 있는 구글 웨이모(Waymo)를 겨냥해 대항마로 개발 중인 모델임. IT 대기업과 스타트업들이 각광받고 있는 자율운전 개발 경쟁에서 GM은 그 동안 존재감이 없었으나전문가들은 크루즈 AV가 GM은 흘러간 과거의 거인이라는 낙인을 지울 만큼 상당한 실력을 품고 있는 것으로 보고 있음



[ 본 문 ]


ž 제네럴 모터스(GM)2018 1월 미국 교통부(DOT)운전대와 페달이 없는 자율운전 자동차의 도로 주행 허가 신청서를 제출하였음


Ø 신청서에 따르면 조작부가 없는 GM 차량의 자율운전 수준은 미국 자동차기술협회(SAE)가 정의한 6단계 중 5단계인 레벨 4'에 해당하는 것으로 보이며, 제한된 조건에서 완전 자율운전의 실현을 테스트 하려는 것으로 보임


<자료> General Motors


[그림 1] 무인차량 크루즈 AV의 내부


Ø GM이 내건 조건 중 하나는 주행 지역을 좁힌다는 것인데, 고정밀 지도 데이터가 구축되어 있고 실제 차량 테스트와 분석에 의한 시뮬레이션 주행 시험을 반복해 왔던 이미 잘 알고 있는 지역에서만 주행하겠다고 밝혔음


Ø GM 2019년에 자율운전 차량의 양산을 시작한다는 계획인데, 양산 초기 판매 모델은 웨이모(Waymo)와 비슷한 형태, 즉 차량 공유나 카풀 등 배차 서비스 기업들의 업무 차량으로 공급될 예정임


ž GM은 크루즈 AV가 배차 서비스와 결합될 경우, 보다 많은 사람들이 자율운전 차량을 경험함으로써 이해도가 높아질 것으로 기대한다는 입장을 밝히고 있음


Ø 크루즈 AV가 배차 서비스에 이용될 경우 사용자는 스마트폰으로 무인 차량을 호출하게 되고, 승차지는 목적지는 제한된 범위 내에서 선택하는 형태가 될 것으로 보임


Ø 웨이모에 이어 GM도 배차 서비스를 우선 타게팅 하는 것은 미국에서 배차 서비스 이용자가 급격한 증가하고 있기 때문으로, 서비스 업체 입장에서는 크루즈 AV를 배차 서비스와 조합하며 운전자 확보 없이도 이용자를 쉽게 늘릴 수 있는 이점이 있음


Ø 또한 GM에 따르면 배차 서비스에 크루즈 AV를 공급할 경우 불특정 다수의 사람이 탑승할 기회를 갖게 되므로, 보다 많은 사람들이 자율운전 기술에 대해 직접 경험하고 안정성과 편의성을 판단할 수 있게 되는 마케팅 효과를 기대할 수 있음


ž 배차 서비스에 크루즈 AV를 우선 공급하는 것이 자동차를 최대한 팔아야 하는 GM에 손해가 될 수도 있으나, 신차 시장이 줄어드는 상황에 적극 대응하기 위한 것으로 보임


Ø 크루즈 AV은 부품 비용이 동급 엔진의 차량 모델에 비해 수천만 원은 높기 때문에 판매가가 높을 수밖에 없으며, 따라서 개인에 판매할 경우 살 수 있는 고객의 수는 제한됨


Ø 부품 가격이 높은 이유는 크루즈 AV에 탑재하는 주요 환경 인식 센서의 수 42개에 이르고 고성능 컴퓨터도 여러 대 탑재되기 때문


Ø 또한 운동제어부의 부품 모두 어느 한 계통이 고장 나도 정상적으로 주행할 수 있는 기능안전(Fail Operational) 방식으로 되어 있어 부품 수가 크게 늘어나기 때문


Ø 게다가 크루즈 AV는 쉐보레(Chevrolet) 브랜드의 전기자동차 볼트(Bolt)를 기반으로 개발 중인데, 볼트는 소형차이지만 고가의 대용량 배터리를 탑재하고 있어 판매 가격이 유사 차종에 비해 약 3 7천 달러 가량 높은 편임


<자료> General Motors


[그림 2] 볼트 EV 기반의 크루즈 AV


Ø 크루즈 AV의 가격이 개인이 구매하기엔 부담스럽지만, 배차 서비스 업체라면 운전자 인건비가 들지 않고 가동 시간을 늘릴 수 있는 장점을 기대할 수 있어 추가 매입 가격이 얼마나 단기간에 회수될 지는 두고 봐야 하지만 수요는 있다는 평가


Ø GM 입장에서는 배차 서비스 업체에 차량을 판매하는 것이 개인들에게 판매하는 것에 비해 손해이지만, 당장은 개인 수요가 불투명해 배차 서비스 업계에 마진을 낮추더라도 대량으로 공급하는 전략을 택할 것이란 게 자동차 산업 애널리스트들의 전망임



Ø 한편 이윤이 낮아짐에도 GM이 배차 서비스용 무인 차량을 우선 개발하는 것은 배차 서비스로 인해 향후 미국의 신차 시장이 줄어들 것으로 전망되기 있기 때문이란 분석도 있음


Ø KPMG에 따르면 2030년 미국의 신차 판매 대수는 1,620만 대로 2016년에 비해 130만 대가 줄어들 것으로 예측했는데, 내역을 보면 배차 서비스 등과 결합된 무인 차량이 300만대 규모로 성장하는 반면 세단 등 개인 소유 차량은 약 420만 대로 크게 줄어든 전망


Ø 만약 예측대로 시작이 변해간다면 개인 대상 판매가 중심인 GM 등 자동차 업체에 타격이 클 것이며, 게다가 웨이모를 비롯한 IT 대기업들이 새롭게 성장하는 시장을 선점할 것이기 때문에, GM으로서는 무인 택시 개발이 공격인 동시에 방어 전략인 측면이 있음


<자료> KMPG


[그림 3] 2030년 미국 신차 시장 전망


ž 구글 등에 가려져 잘 알려지지 않았지만 GM의 자율운전차 연구개발의 역사는 오래 되었으며, 자동차 업계에서는 자율운전 연구의 선구자로 인정받고 있음


Ø 80년 전인 1939년 뉴욕 국제 박람회에서 GMFuturama(퓨처라마)라는 제목의 세밀한 디오라마 연출을 통해 고속도로를 자동으로 달리는 자동차의 미래 이미지를 선보인 바 있는데, 자율주행이 IT 기업에 의해 제시된 개념은 아님을 엿볼 수 있음



Ø 비교적 최근에도 자율운전 기술의 전환점에 GM이 밀접한 관련이 있는데, 치열한 기술 경쟁의 계기가 된 2007DARPA(방위고등연구계획국) 개최 자율운전차 경주 대회에서 우승 한 카네기 멜론 대학에 차량을 제공하고 개발을 도운 곳이 GM이었음


Ø 그러나 당시 카네기 멜론 팀의 개발 리더였던 크리스 우름슨은 대회 종료 후 구글에 들어가는데, GM도 초빙했다고 하나 구글에 납치되다시피 했다는 후문이며, 이런 배경을 놓고 보면 GM에게 구글은 악연의 적수라 할 수 있음


ž GM은 크루즈 AV의 개발에 있어 안전성과 신뢰성을 중시하고 있음을 강조하고 있는데, 자동차 양산 경험이 없는 웨이모와 차이를 가장 잘 보여줄 수 있는 지점으로 보기 때문


Ø GM은 크루즈 AV 1983년 설립된 미시간주 오리온 공장에서 양산할 계획인데, 수십 년에 걸쳐 발전시켜 온 설비 및 공정을 통해 생산함으로써, 자체 자동차 공장이 없는 웨이모 등 ICT 기반 신흥 자동차 업체들과 차별성을 보여준다는 전략임


Ø 실제 안전성과 신뢰성은 자율운전 자동차의 판매에서 가장 중요한 요소가 될 가능성이 높은데, 가트너의 2017년 설문 조사에서 55%의 응답자가 기술적인 결함에 대한 불안을 이유로 자율운전 자동차를 타고 싶지 않다고 답했음


Ø 이는 자동차의 안전성이 곧 생명과 직결되기 때문으로, 향후 안전성과 신뢰성에 관해 소비자의 마음을 얻을 수 있는지 여부가 자율운전 차량의 매출을 크게 좌우할 것임을 시사


Ø GM은 개발 방식에 있어서도 웨이모에 비해 안전성과 신뢰성에서 우위에 있다고 어필하고 있는데, 하드웨어와 소프트웨어를 모두 자사에서 개발한다는 것을 근거로 들고 있음


Ø GM과 달리 현재 웨이모는 분업 체계를 선택하여, 웨이모가 소프트웨어를 담당하고 파트너인 미국 피아트·크라이슬러·오토모빌스(FCA)가 차량의 개발과 생산을 담당하고 있음


Ø 이에 대해 GM은 방대한 소프트웨어와 수만 개 부품의 하드웨어로 구성되는 자율운전 차량의 특성상, 분업은 신뢰성 높은 시스템의 개발과 평가를 원활하게 진행하기가 어려운 방식이라 주장하고 있음


Ø GM 2016년에 자율운전 소프트웨어를 개발업체인 크루즈 오토메이션(Cruise Automation)을 약 10억 달러에 인수해 GM 내부로 포섭한 바 있음


Ø 이를 통해 하드웨어와 소프트웨어 팀 간의 긴밀한 협력을 통해 모든 시스템의 잠재적인 고장 패턴을 분석하여 안전하고 신뢰할 수 있는 무인 자동차를 생산할 수 있게 되었다는 것을 자신들의 장점으로 어필하고 있음


ž 주행 성능 면에서도 GM은 웨이모에 대해 우위라고 은근히 주장하는데, 2019년에 시작할 배차 서비스를 주행 환경이 복잡한 도심에서 시작할 것임을 내비치고 있기 때문


Ø 웨이모는 2018년부터 애리조나주 피닉스의 교외 지역에서 무인 차량을 이용한 배차 서비스를 정식 시작할 계획인데, 피닉스는 도심에 비해 교통량이 적고 도로 정비가 잘돼 있기 때문에 사고가 일어날 가능성은 상대적으로 낮은 지역이라 할 수 있음


Ø GM은 상용화 시점은 웨이모에 비해 늦었지만 교외에서 서비스를 하는 웨이모에 비해 주행 성능은 자신들이 뛰어나다는 것을 보여주려 하고 있음


Ø GM은 도로 주행 시험 허가 신청서와 함께 공개한 자료(☞클릭) 를 통해 도심인 캘리포니아주 샌프란시스코와 교외 지역인 피닉스 근교의 교통 환경이 어떻게 차이 나는지를 의도적으로 강조하였음


Ø 긴급 차량의 운행대수나 좌우 회전 교차로의 수가 샌프란시스코에 훨씬 많다는 것을 강조한 것인데, 주행 환경이 쉬운 피닉스에서 서비스를 시작하는 웨이모를 강하게 의식한 것이 분명해 보임


Ø GM은 현재 샌프란시스코 이외에 미시간주 디트로이트에서 도로 주행 테스트를 하고 있는데, 향후 대도시 뉴욕에서도 테스트를 시작할 예정이며, 도심 중심의 주행 테스트에 주력함으로써 웨이모를 추격한다는 전략임


[1] GM과 웨이모의 자율주행 테스트 환경의 비교(자율주행 1천 마일 당 빈도)

운행 조작/시나리오

샌프란시스코(GM)

피닉스 교외(웨이모)

비율

좌회전

1,462

919

1.6:1

차선 변경

772

143

5.4:1

공사로 인한 차단 차선

184

10

19.1:1

반대편 차선을 이용한 통행

422

17

24.3:1

공사 현장 주행

152

4

39.4:1

응급 차량

270

6

46.6:1

<자료> General Motors


Ø 반면 GM은 자율주행 테스트 총 주행거리를 밝히고 있지는 않은데, 주행거리는 지금까지지 누적 400만 마일을 테스트한 웨이모가 자신들의 안전성과 신뢰성을 어필하는 요소로 강조하는 포인트이고, GM이 단기간에 따라잡기란 불가능하기 때문


ž GM의 기술에서 핵심 개념은 중복 설계(Redundancy)인데, 안전과 신뢰성을 위해 주요 기능의 구동이 실패한 경우에도 주행을 계속할 수 있는 구조를 갖추고 있음


Ø IT 시스템 구축에서 중복 설계(리던던시)는 비용을 높이더라도 무중단 가동 환경을 만드는 것인데, 트레이드-오프 관계에 있는 비용과 안전성의 두 요소를 놓고 GM은 자율운전차 판매에서 안전이 가장 중요하다고 생각해 비용을 높여 안전성을 선택한 것으로 보임


Ø GM에 따르면 크루즈 AV의 자율운전 시스템에는 인식(Perception)-주행 계획(Planning)-차량 제어(Control)의 세 가지 주요 기능이 있는데, 모두 중복 설계 되었다고 함


Ø 예를 들어 인식 기능은 차량 주변 객체의 위치와 속도, 방향, 종류를 계산하는 것인데, 핵심은 차량 주위 360도를 인식하는 센서 군으로, 작동 원리가 다른 3 종류의 센서를 사용하는 것에 더해 동일한 장소를 복수의 센서로 감지하도록 중복 설계하였음


ž 크루즈 AV는 라이더(LIDAR, 적외선 레이저 센서) 5, 카메라 16, 밀리파 레이더 21개를 탑재했는데, 한 센서가 작동하지 않아도 다른 센서로 주위 360도 인식 기능을 유지함


<자료> GM


[그림 4] 크루즈 AV 지붕의 5대 라이더 센서


Ø 3종류의 센서 중 핵심은 라이더로, 라이더 하나 만으로도 안전하게 주행할 수 있는 기본 기능을 구현할 수 있는데, GM 2017 10월 라이더를 개발하는 스타트업 스트로브 (Strobe)를 인수하고 기술 고도화에 투자하고 있음


Ø 밀리파 레이더는 주로 이동하는 물체의 감지를 담당하며 라이더를 지원하는데, 전파의 반사에 의해 차량과 이동하는 객체의 상대 속도를 측정하는 데 강점이 있음


Ø 라이더와 밀리파 레이더는 각각 레이저()와 전파를 이용해 측정 원리가 다르기 때문에 레이저의 반사율이 낮은 경우 전파의 반사로 보충하는 보완 관계가 형성됨


Ø 카메라는 물체의 색상과 모양을 고화질로 감지 할 수 있어 거리와 속도를 감지하기 보다 주로 물체의 분류와 추적에 사용하지만, 여러 대의 카메라로 거리를 감지하는 기능을 갖출 수 있어 라이더가 구동하지 않을 경우 어느 정도 기능을 대체할 수 있음


Ø 인식 기능에는 센서 군에 의한 물체 감지 외에도 자기 위치 추정(Localization) 기능이 포함되는데, 이는 자율운전의 근간으로 만일 실패하여 추정의 정확도가 크게 떨어지면 자율운전이 불가능하므로 GM은 여러 방법으로 추정이 가능하도록 중복 설계하고 있음


Ø 가령 내비게이션 기능에서는 일반적인 GNSS(위성위치확인시스템)와 자이로 센서를 결합하는 방법과 라이더 등으로 측정한 특징물과 고정밀 지도 데이터의 위치를 ​​대조하는 방법 등을 동시에 이용해 자기 위치를 추정하고 있음


ž 인식 결과를 바탕으로 주행 계획을 수립하게 되며, 여기에서 중요한 것은 행동예측과 보이지 않는 영역에 대한 고려인데, GM은 이 기능에 딥러닝을 적용하였음


Ø 주행 계획에는 내비게이션과 마찬가지로 목적지까지의 경로를 계산하는 매크로 주행 경로 결정과 사고 확률을 줄이기 위한 마이크로 주행 경로 결정이 포함되는데, 최근 중요성이 강조되는 것은 마이크로 주행 경로 결정임


<자료> GM


[그림 5] 마이크로 주행 경로의 결정


Ø 마이크로 주행 계획은 우선 센서에서 인식한 주변 객체의 3 차원 모델을 구축해 정밀 지도 데이터에 가상으로 배치한 다음 객체의 종류와 속도 등의 계산 결과를 바탕으로 지도 데이터에서 객체 모델의 움직임을 예측하는 것임


Ø 차량과 보행자, 트럭, 자전거 등의 종류에 따라 움직이는 방법이 매우 다양하기 때문에 이를 고려하여 행동 예측에 반영시키게 됨


Ø 그런 다음 인식 기능으로 계산한 주행 한계의 결과와 조합하여 차량이 달릴 범위를 결정하게 되는데, 주행 가능 범위 내에서 사고의 위험이 낮고 빠르게 달릴 수 있는 경로를 그리고 그 경로에 따라 차량이 움직이도록 함


Ø 주행 한계의 계산은 인공지능(AI)의 일종인 딥러닝(심층 학습)을 사용하는데, 주행 한계는 일반적으로 흰색 선이나 가드 레일, 차도와 인도의 턱 등을 통해 쉽게 찾을 수 있음


Ø 그러나 외곽 도로의 경우 흰색 선이 없어 주행 한계를 이해하기 어려운 곳이 자주 나타나기 때문에, 주행 한계를 결정할 때 달릴 수 없는 영역으로 분류된 곳의 수 많은 이미지를 이용해 훈련시킨 AI의 판단이 효과를 발휘할 수 있음


Ø 주행 경로의 결정에서 GM은 특히 센서에 보이지 않는 영역의 처리를 위한 연구를 중요시하고 있는데, 비나 안개, 다른 객체에 가려 보이지 않는 영역을 파악하고 안전한 경로를 결정하는 데 연구 결과를 적용하고 있음


Ø 가령 지도 데이터의 보이지 않는 영역에 가상의 깃발(플래그)을 세우고, 그 깃발 지점에서 물체가 갑자기 튀어 나오는 위험을 계산한 후, 그 결과값을 가미하여 주행 경로를 신중하게 결정함으로써 운행의 안전도를 높이고 있음


ž 주행 계획의 계산에도 중복 설계를 하고 있는데, 경로 결정 대로 주행이 제대로 실행되지 않을 경우에 대비해 항상 여러 백업 경로를 준비해 두도록 하고 있음


Ø 크루즈 AV는 초당 10회 정도의 경로를 계산하여 이 중 가장 안전하고 빠르게 달릴 수 있는 경로 선택을 기본 원칙으로 하고 있음


Ø 그러나 예상대로 주행이 이루어지지 않을 때를 대비해, 가령 차선을 변경하는 경로를 선택했을 때 갑자기 다른 차가 변경하려는 주행 경로를 차단했을 때는 원래 차선으로 달리는 등 백업으로 준비하고 있던 경로로 즉각 전환하도록 하고 있음


Ø 주행 계획의 연산에는 통신(Networking) 기능도 활용되는데, 다른 크루즈 AV 차량이 인식한 정보를 경로 계획에 반영하는 것으로, 다른 차량이 인식한 정보를 클라우드로 통합한 후 네트워크를 통해 모든 크루즈 AV 차량이 공유하도록 하고 개발하고 있음


Ø GM은 이를 두고 한 대가 학습한 것을 모든 차량이 학습한다고 표현하는데, 일반 자동차에 없는 장점으로 크루즈 AV의 안전 운전에 크게 기여할 것으로 기대하고 있음


ž 차량 제어 기능은 주행 계획에 따라 가속과 감속, 조향을 제어하는 것인데, 차량 제어에 관련된 전기 계열 하드웨어 부품을 모두 이중화하였음


Ø 예를 들어 자율운전 기능의 주요 ECU(전자제어장치)를 두 개 탑재하는 것인데, 한 컴퓨터가 구동에 실패할 경우 동시에 계산하고 있던 다른 한쪽이 연산을 이어받게 됨


<자료> GM


[그림 6] 크루즈 AV 주요 배선의 이중화


Ø 이 때 2개의 ECU가 상호 감시하는 구조에서는 어느 쪽이 실패했는지 결정할 수 없기 때문에 GM ECU를 전체 시스템의 고장 유무를 항상 감시하는 자자가 진단 ECU를 또 하나 탑재하였음


Ø 이 진단 ECU가 있으면 다수결로 어떤 ECU가 실패했는지 결정할 수 있기 때문에, 실패한 ECU의 신호를 사용하지 않고 남아 있는 정상적인 ECU의 신호로 차량을 제어하게 됨


Ø 주요 기능의 전원 공급 장치 역시 2개의 계통을 준비하는데, 주 전원이 실패하면 백업 전원에서 주요 ECU와 인식 센서, 스티어링, 브레이크 등에 전력을 공급함


Ø 특히 브레이크에 대해서는 전용 카메라를 별도로 설치하여 일반적인 자율운전 기능 용도 이외에 자동 브레이크 기능을 추가로 탑재하고 있음


Ø 주요 ECU를 연결하는 신호선도 이중으로 하여 한쪽 통신이 끊어진 경우 다른 쪽으로 신호를 교환하도록 하고 있음


Ø 또한 확률은 낮지만 주요 부품과 백업 부품이 고장 나는 경우에 대비한 방안도 강구하고 있는데, 이 경우 페일 세이프(fail safe) 기능을 통해 안전하게 정지한다고 함


ž 크루즈 AV는 주행 계획 등에 통신 기능을 이용하고 있기 때문에, 무선 통신을 통해 해킹이 발생할 경우 중대 사고로 이어지게 되므로 GM은 보안 대책에도 주력하고 있음


Ø GM이 인수한 크루즈 오토메이션에는 자동차 업계의 화이트 해커로 가장 유명한 두 사람이 있는데, 찰리 밀러 (Chary Miller)와 크리스 발라섹(Chris Valasek)


Ø 이 둘은 2013년 도요타 프리우스를 해킹하여 주목을 받았으며, 이후 우버 등을 거쳐 크루즈 오토메이션에 일하던 중 GM의 인수로 현재는 크루즈 AV 보안 개발에 참여하고 있음


Ø 보안을 위해 GM은 소프트웨어의 취약점을 포괄적으로 분석하는 도구 및 잠재적인 위협을 업스트림(상위 공정)에서 발견하여 제거하는 위협 모델링 등을 활용 중이라고 하며, 통신에 메시지 인증 기능과 함께 침입 탐지 기능을 도입했다고 함


ž 웨이모가 크게 앞서는 듯 보이던 자율운전차 시장에 전통의 자동차 업체 GM이 강력한 대항마로 나섬에 따라 2018년 자율운전차 시장의 상용화 모멘텀은 더욱 커질 전망


Ø 웨이모는 주행거리를, GM은 주행환경의 난이도를 강조하는 것으로 나타나고 있으며, 서비스 업체와 소비자의 마음을 얻기 위한 양사의 경쟁 과정에서 기술의 발전과 소비자 인식 전환, 상용 서비스 완성도 제고가 극적으로 전개될 것으로 기대되고 있음

댓글을 달아 주세요